Tag Archives: Sustainable Energy

SDG 7 and SE4All: The role of Sub-Saharan Local Governments in Supporting Sustainable Energy Goals

This blog explores the role of Sub-Saharan African local governments can play in supporting the SDG energy-related goals and SE4All goals.  It suggests that they play a key role in this area given that they are often at the forefront of service delivery and end-user interaction. Yet overall the capacity and resource needs of local governments on the sub-continent remain under-prioritised by national governments, international development aid agendas, and the global research community.

The goals of SDG7 and SE4All are closely aligned, but there are also other SDG goals that are relevant to sustainable urban energy.  The SDG7 targets are:

  • By 2030, ensure universal access to affordable, reliable and modern energy services
  • By 2030, increase substantially the share of renewable energy in the global energy mix
  • By 2030, double the global rate of improvement in energy efficiency
  • By 2030, enhance international cooperation to facilitate access to clean energy research and technology
  • By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all

In addition, relevant goals from SDG11 (sustainable cities) include access to safe, affordable, accessible and sustainable transport systems, enhancing the capacity for integrated and sustainable human settlement planning, and addressing the impact of poor air quality and municipal waste. All of these are closely linked to sustainable energy futures.

Many Sub-Saharan African countries have, or intend to develop, plans whereby the SDG7 and SE4All goals can be pursued.  For example both Ghana and Uganda have such plans (Ghana SE4All Action Plan 2012, Uganda SE4All Action Agenda 2015), although it is notable that such key energy planning documents do not mention the transport sector – a major and fast growing energy consumer and emissions contributor. South Africa does not appear to have specific SE4All planning documents, although many initiatives exist in the country which are in pursuit of these objectives.

Numerous important sustainable energy initiatives are substantially linked to, or dependent on, national processes and mandates, or are best handled at a centralized national level (e.g. national power grid capacity upgrading, or changing regulatory frameworks around local generation).  Nevertheless, much lies within the mandate or direct influence of local governments, and globally there is an increasing emphasis on local players taking a stronger role in sustainable energy issues, as has been reflected at the recent COP gatherings in Paris and Marakesh.  In this regard, the work of the SAMSET project (Supporting sub-Saharan African Municipalities with Sustainable Energy Transitions) indicates that local governments on the sub-continent, and local research organisations, can play an important role in the following areas.

Local facilitation of household energy programmes which are driven by national or other players, such as cookstove, efficient appliance and electrification programmes: this includes collecting and providing information and data on needs and opportunities in local area; participating in implementation planning, community awareness raising and communication, and monitoring once implemented (all of these are best done at a local level); conducting research on impact and methodology improvements (Has it improved welfare? How could it have been better implemented? Costs vs benefits? Subsidy needs and justification? etc), and conducting research on impact on local small businesses (e.g. charcoal producers and retailers, appliance shops, cookstove manufacturers etc).

Promotion or facilitation of renewable energy programmes which need to be at least partially locally based (which may be driven locally or by national or other players), such as biogas, rooftop grid-connected solar PV, and solar water heating initiatives: this includes identification of local biogas opportunities (e.g. abattoir) and facilitating feasibility studies; engaging with power utility around local grid-connected solar PV pilot projects; engaging with local businesses (e.g. solar water heater, solar PV suppliers) regarding how to facilitate rollout and improve affordability; awareness raising and community engagement, and monitoring of implementation; research on impact and methodology improvements to maximize benefits; promotion and advocacy around fast-emerging options such as rooftop grid-connected solar PV; direct procurement of solar PV streetlights, and undertaking landfill gas feasibility studies and subsequent implementation pursuit.

Building energy efficiency promotion (local government often has direct mandates here): this includes developing local bylaws for commercial building energy efficiency; awareness raising around residential building energy efficiency (appropriate window use, shading etc), and organising training of building sector to improve ability for energy efficient construction.

Industrial energy efficiency promotion: including encouraging/incentivising audits (e.g. link with donor EE programmes), and facilitating training and awareness programmes locally.

Bringing sustainable energy concerns into spatial planning and transport planning: this includes introducing densification, corridor development, mixed use and other approaches into spatial plans; bringing tribal authorities (land owners) and municipal officials together in developing a shared vision around spatial futures, and researching and modeling the impact of different spatial and transport interventions on future energy, cost, social welfare, and economic activity – and engage with regional and national transport planning processes to introduce more optimal approaches.

Developing a more conducive enabling environment for implementation: this includes linking with support/donor programmes around supporting sustainable energy, and identifying how collaboration could work; researching and providing local data on energy status, problems, and opportunities; researching and communicating updates on implementation status as programmes are implemented, and evaluate their impact; capacity building of local government staff; programmatic partnerships between local government and local research institutions; developing networks amongst local governments for lessons exchange and mutual support, and developing links between local, regional and national players to facilitate integrated planning and coordinated approaches

Helping clarify the role of local government in sustainable energy, and identify effective methodologies to support them in fulfilling this potential: this includes researching the process of local government involvement and role in sustainable energy, and assess their challenges in this regard, researching approaches to supporting local government to engage effectively with sustainable energy promotion, and disseminate experience in this regard and potential for local government in promoting sustainable energy at workshops, conferences, meetings etc.

The role of local governments and local research organisations in moving to a more sustainable energy future as envisioned by the SDGs is clearly substantial. This has implications for development aid resource allocation and research funding channels.  Importantly, it is not enough to just fund research – a dual approach of partnerships with researchers who align directly with the needs of local governments, as well as a strong focus on real capacity building of local governments is important (note that information dissemination is not capacity building).  Programmes such as SAMSET are working in this area, but the needs are currently far greater than the enabling resources, by an order of magnitude at least.

Kampala CPD Course Plenary Sessions and Group Work – Days 2 – 5

The SAMSET Project hosted a continuing professional development course at Victoria University in Kampala, Uganda from the 7th – 11th November 2016. As shown in the previous post, the urban energy management issues present today in Kampala make the city an appropriate place to discuss the future of sustainable urban energy transitions.

wp_20161108_004

The Hon. Dr Chris Baryomunsi, Minister of State for Housing, addressing the opening of the CPD Course. Image: Daniel Kerr

The course was opened with an address from the Hon. Dr Chris Baryomunsi, who gave an address on the overarching issues facing urban Kampala today, include economic growth, population growth and land management. The first plenary day of the course focused on resource efficiency in energy planning and management in the urban sphere. The presentations on this day focused on the mandate that municipal officials have in the energy space (or lack thereof) and a focused discussion on the importance of data in energy planning, as well as case studies of successful initiatives in other Sub-Saharan African cities and the challenges they faced. The city of Cape Town was presented as a successful sustainable transitions case study, with the presentation from Sumaya Mohamed from the City of Cape Town Energy Authority detailing a number of the successful interventions the city has implemented, including electrification of “backyarder” properties and the development of the metropolitan bus transit system. The place of data was also highlighted through Adrian Stone from Sustainable Energy Africa’s exercise, encouraging participants to analyse and discuss data from a recent Jinja state of energy survey themselves.

The second day of the course focused on participation and key stakeholders in energy management, and methods to identify the stakeholders through network mapping, as well as to what extent these stakeholders and able (or willing) to advocate for energy transitions. Presentations on this day focused on the realities of bringing sustainable planning into action, whilst managing competing demands, with experiences and cases from the SAMSET Ghanaian partner municipalities, Awutu Senya East and Ga East, as well as from the Ugandan partner municipalities Jinja and Kasese. The closing keynote was presented by David Kasimbazi, head of the Centre for Urban Governance and Development at Victoria University, on the definitions of governance and good governance, and how this affects sustainable energy transitions in cities.

wp_20161109_006

Urban energy budgetary planning group session, led by Gamos. Image: Daniel Kerr

The third day of the course focused on the place that policy and regulatory frameworks can have in sustainable urban energy transitions. Presentations focused both on high-level policy and regulatory mechanisms, as well as technology-specific interventions in the urban sphere. The morning presentation from Vincent Agaba of the Real Estate Agents of Uganda was particularly relevant, in offering a property developer’s perspective in the sustainable transitions space, and the definitions of enabling environments in the space for developers. The afternoon saw Simon Batchelor from Gamos conduct a Netmapping exercise, a tool which the organisation has developed over many years, to identify the key stakeholders in the urban energy space, both in the partner municipalities outside Uganda and in Jinja and Kasese, as well as within the city

Day four of the course was centred around the theme of “Build(ing) Resilience”, with presentations focusing on designing and building with people, as well as ensuring resilience in design and sustainability. Key themes covered in the presentations included environmentally conscious design, with cases from local as well as international buildings, presented by Mark Olweny of Uganda Martyrs University, as well as innovative outreach initiatives for building support for sustainable energy transitions, and the use of the tourism sector as a driver of sustainable transitions, presented by Herbert Candia of Uganda Martyrs University.

The SAMSET Project will be hosting a third and final CPD course in Accra, Ghana from the 26th – 30th June 2017. More information on the course will be available both on this blog, as well as the project website, and the project Twitter.

Daniel Kerr, UCL Energy Institute

Continuing Professional Development Course – Kampala, Uganda 7-11 November 2016 – Fieldwork

The SAMSET Project hosted its second continuing professional development course at Victoria University in Kampala, Uganda from the 7th – 11th November 2016. The title of the course was “A Practitioner’s Insight into Urban Energy Planning, Implementation and Management”, and aimed to cover the issues that practitioners (such as urban planners, architects and municipal government officials) face when addressing urban energy management.

The first day of the course was focused on fieldwork in and around Kampala, aiming to give attendees experience of the issues facing Kampala in the urban energy and sustainable energy spheres today. The first part of the fieldwork focused on the central market district in Kampala, and involved a walking tour led by local partners through the market area and central business district of the city.

wp_20161107_024

Part of the central market district in Kampala. Image: Daniel Kerr

To say that the market area in Kampala is busy is an understatement. Passage through the area is only really possible on foot in some places, and even then only when avoiding the constant movement of goods and people through the narrow streets of the market district. The main roads in the area are extremely busy, with heavy goods vehicles mixing with matuba taxis and boda-bodas (motorcycle taxis) to create effective gridlock at some points in the day. The sustainable energy market, however, was on show in many areas, whether that be hole-in-the-wall shops selling small solar home systems, to street vendors selling improved cookstoves and cookstove liners. The challenges to urban transport were clear to see in the area, particularly how best to facilitate the movement of goods and people in the centre of the city, without stifling the bustling engine of economic growth that the central market district provides to the city.

The second phase of the CPD course fieldtrip involved a visit to a local landfill site on the outskirts of Kampala. This site processed a significant amount of the solid waste in the city, including from official waste management collection services and informal networks of waste collectors. The site also supports a network of informal waste pickers and processors, collecting items such as plastic waste for recycling. A recent initiative at the landfill has seen a PTFE processing facility constructed through collaboration with Chinese investors, although this site has not been without issues. In particular, while investment in the processing facility has created employment at the site, redistribution of profits from the facility has not occurred, with very little being reinvested in the site or community of waste pickers servicing it.

wp_20161107_039

Landfill site in Kampala, Uganda. Image: Daniel Kerr

The issues facing solid waste management in large, primary cities such as Kampala are myriad, and the effects of this were plain to see in this phase of the trip. Collection and processing, as well as sustainability in operations, are both issues that need to be addressed by urban planners when considering municipal waste issues.

Daniel Kerr, UCL Energy Institute

Continuing Professional Development Course – Kampala, Uganda, 7-11 November 2016

The consortium of the Supporting African Municipalities in Sustainable Energy Transitions (SAMSET) researchers is organising a CPD from 7 – 11 November, 2016 in Kampala (Uganda) during which it will share with key stakeholders findings thus far, strategies and case studies from the research and key allies in the field. Concepts from these sessions are geared towards supporting initiatives for energy transitions in various arena in the urban environment.

At the core of the SAMSET project is promoting responsible use of and access to clean energy. The role of national policy and regulatory frameworks and how these have since evolved to link government and governance on the one hand and academia, finance, investment and community on the other, in developing instruments that promote and facilitate energy transitions is interrogated in this project. The project is cognisant of the fact that social or socio-economic engagement in as far as they influence attitudes toward sustainable energy transitions are key drivers. As such, even at local/micro scale SAMSET is very keen to empower local communities to thrive on their own. As a strategy to deliver key action oriented messages, case studies that demonstrate the presence and impact of projects on communities at urban scale will be explored.

On the first day, 7 November, 2016, participants will be taken on a field trip to acquaint themselves with the scope of urban energy. This will be followed by four days of in-depth presentations to familiarise participants with the subject matter and group tasks to enable participants apply themselves in order to appreciate the concepts better. The key themes will include: Resource-efficiency in Energy Planning, Implementation and Management; Participation and Key Stakeholders in Energy Planning, Implementation and Management; Policy and Regulatory Frameworks and; BUILD[ing] Resilience.

While the CPD is open to all Built Environment practitioners ranging from government departments, development partners, architects, engineers, planners, building control officers, energy managers, contractors, housing associations, developers, clients, students, academics and researchers, it will also involve key actors like the the Parliamentary Committee handling Climate Change/Energy Policy and/or Building Regulations; Kampala Capital City Authority; Ministry of Local Government; Ministry of Energy and Mineral Development; Ministry of Lands, Housing and Urban Development, Uganda National Bureau of Standards; Uganda Revenue Authority, Uganda Local Government Association and; representatives from the project’s Pilot Municipalities in Uganda – Jinja and Kasese.

Please visit www.samsetproject.net for more details about the project, or click here for the course flyer.

Daniel Kerr, UCL Energy Institute

Sub Saharan African local government and SDG 7 – is there a link?

Megan Euston-Brown from SEA writes on the importance of considering local government spheres in sustainable energy development in light of the recent UN Sustainable Development Goals 7.

Building an urban energy picture for Sub Saharan Africa (SSA) is a relatively new endeavour, but policy makers would do well to take heed of the work underway [1]. The emerging picture indicates that current levels of energy consumption in the urban areas of SSA is proportionally higher than population and GDP [2]. These areas represent dense nodes of energy consumption. Africa’s population is expected to nearly double from 2010 to 2040 with over 50% of population urbanized by 2040 (AfDB 2011). Thus by 2040 it is likely that well over 50% of the energy consumed in the region will be consumed within urban areas. Strategies to address energy challenges – notably those contained within SDG 7 relating to the efficient deployment of clean energy and energy access for all – must therefore be rooted in an understanding of the end uses of energy in these localities for effective delivery.

SDGs

Analyses of the end uses of energy consumption in urban SSA generally indicate the overwhelming predominance of the transport sector. Residential and commercial sectors follow as prominent demands. Cooking, water heating, lighting and space cooling are high end use applications. Industrial sector energy consumption is of course critical to the economy, but is generally a relatively small part of the urban energy picture (either through low levels of industrialisation or energy intensive heavy industries lying outside municipal boundaries).

Spatial form and transport infrastructure are strong drivers of urban transport energy demand. Meeting the ‘low carbon’ challenge in SSA will depend on zoning and settlement patterns (functional densities), along with transport infrastructure, that enables, continues to prioritise and greatly improve, public modalities. These approaches will also build greater social inclusion and mobility.

The high share of space heating, ventilation and lighting end uses of total urban energy demand points to the significant role of the built environment in urban end use energy consumption.

These drivers of energy demand are areas that intersect strongly with local government functions and would not be addressed through a traditional supply side energy policy [3]. Understanding the local mandate in this regard will be important in meeting national and global sustainable energy targets.

dennismokoalaghana

Urban highway in Ghana. Image: Dennis Mokoala)

The goal of access to modern, safe energy sources is predominantly a national supply-side concern. However, with the growth of decentralised systems (and indeed household or business unit scale systems being increasingly viable) local government may have a growing role in this area. In addition an energy services approach that supplements energy supply with services such as solar water heating, or efficiency technologies (e.g. LED lighting), may draw in local government as the traditionally mandated service delivery locus of government.

An analysis of the mandate of local government with regard to sustainable energy development across Ghana, South Africa and Uganda indicates:

  1. National constitutional objectives provide a strong mandate for sustainable development, environmental protection and energy access and local government would need to interpret their functions through this constitutional ‘lens’;
  2. Knowing the impact of a fossil fuel business-as-usual trajectory on local and global environments, local government would be constitutionally obliged to undertake their activities in a manner that supports a move towards a lower carbon energy future;
  3. Infrastructure and service delivery would need to support the national commitments to energy access for all;
  4. Decentralisation of powers and functions to local government is a principle across the three countries reviewed, but the degree of devolution of powers differs and will affect the ability of local government to proactively engage in new approaches;
  5. Existing functional areas where local government may have a strong influence in supporting national and global SDG 7 (sustainable energy) targets include: municipal facilities and operations, basic services (water, sanitation, and in some instances energy/electricity) and service infrastructure, land use planning (zoning and development planning approval processes), urban roads and public transport services and building control.
  6. Where local government has a strong service delivery function it is well placed to be a site of delivery for household energy services and to play a role in facilitating embedded generation. New technologies may mean that smaller, decentralised electricity systems offer greater resilience and cost effectiveness over large systems in the face of rapid demand growth. These emerging areas will require policy development and support.

In practice the ability of local government to respond to these mandates is constrained by the slow or partial implementation of administrative and fiscal decentralisation in the region. Political support of longer-term sustainable urban development pathways is vital. Experience in South Africa suggests that the process is dynamic and iterative: as experience, knowledge and capacity develops locally in relation to sustainable energy functions, so the national policy arena begins to engage with this. Thus, while international programmes and national policy would do well to engage local government towards meeting SDG 7, local government also needs to proactively build its own capacity to step into the space.

[1] In South Africa this work has been underway since 2003; SAMSET is pioneering such work in Ghana and in Uganda and the World Bank’s ESMAP has explored this area in Ghana, Ethiopia and Kenya. SAMSET is also undertaking a continent-wide urban energy futures model.

[2] Working Paper: An exploration of the sustainable energy mandate at the local government level in Sub-Saharan Africa, with a focus on Ghana, South Africa and Uganda. Euston-Brown, Bawakyillenuo, Ndibwambi and Agbelie (2015).

[3] Noting that not all drivers of energy demand intersect with local government functions, for example, increasing income will drive a shift to energy intensive private transport; and that population and economic growth will always be the overarching drivers of demand.

Energy and Africities Summit 2015

Mark Borchers from Sustainable Energy Africa writes on  the recent Africities summit, and the role that SAMSET played in advancing sustainable energy themes at the summit.

The Africities Summit is held every 3 years and is possibly the foremost gathering of African local government politicians and officials on the African continent. It is also well attended by national government and other players such as local and international NGOs.

The SAMSET team attended the 2015 Africities Summit in Johannesburg in November, and SAMSET organized a session on Sustainable Energy in urban Sub-Saharan Africa: the Role of Local Government (see the background paper here). It was competently chaired by the Executive Mayor of Polokwane (a South African municipality), Cllr Thembi Nkadimeng, and key recommendations emerging were included in the Summit outputs.

samset blog 1.2.16 image

Panel Discussion, Africities Summit, Johannesburg, November 2015: Source: Mark Borchers

In addition, SAMSET, in partnership with SALGA, GIZ and the City of Johannesburg, organized fieldtrips to sustainable energy installations in the area – rooftop solar PV, landfill gas electricity generation, sewage methane electricity generation, mass solar water heater rollout, and public transport and spatial planning systems (click here for an example).

Overall, however, although our event was relatively well attended, it was interesting to me that energy and climate change did not seem to be a priority in the minds of the majority of attendees. There were a few energy and/or climate change sessions held, and these did not attract much attention compared with many other sessions. Let us not forget that this relatively low level of participation in the energy events is in the context of a great range of parallel sessions of central importance to local governments, such as those around transparent governance, demographics, financial resources, decentralization and relationships with tribal authorities. In addition, the energy related events were not the only ones with unexpectedly low attendance. Nevertheless, it was apparent to me that energy issues were more peripheral to local government than I had envisaged.

On reflection, this isn’t surprising. Dr Vincent Kitio of UN Habitat Nairobi hosted one such energy event at the 2015 Africities, and told me that a similar event he organized at the previous Africities was the first ever that focused on energy. So energy is a relatively new consideration for local governments. In most African countries energy is considered purely a national function, and the important influence of local government on sustainable energy, such as in transport and spatial planning and building design, and the renewable energy opportunities from waste management, amongst others, has still not been internalized by any sphere of government other than in a scattering of pioneering municipalities across the sub-continent.

Yet, as noted by the Cities Alliance “…as long as cities and local authorities are not put in a position to take initiatives and be at the forefront of actions to make African cities more inclusive, competitive, sustainable, safer and better managed, there is little chance that Africa will overcome the challenges posed by rapid urbanization” (Assessing the Institutional Environment of Local Governments in Africa, 2014, p10).

This need to capacitate and resource local government applies to their role in promoting sustainable energy as well, and is of added urgency given the monumental challenge of meeting SDG (Sustainable Development Goal) 7 in Sub-Saharan Africa. This is the area SAMSET is working in, but, given how far we still have to go, many more players and resources are needed to achieve the huge shifts necessary.

Shifting the Thinking in Electricity Provision

Simon Batchelor from Gamos writes on smart energy grids, encouraging energy consumer engagement in Africa, and the concept of the “smart consumer”.

It is very interesting reading the European Union’s goals around energy, and in particular the ideas around Smart Energy Grids.  They draw a lot from the works of Rochester Institute of Technology, which has produced the following diagram.

Could Energy Consumers in Africa Become Smarter?
Could energy consumers in Africa become smarter?

There is a move within Europe to make people more aware of energy, and for consumers to make more active choices in their energy consumption.  In general terms, researchers talk about how electricity provision has traditionally been a one directional and always on model.  European households sign up to a utility, and expect electricity to be available whenever they want.  In the UK, for instance, they often pay by direct debit (i.e. they don’t really think about the cost – it goes out automatically from their bank), and 63% of them never switch suppliers.  They ‘receive’ electrical energy, and the majority just don’t really think about it.  When it comes to transport, this is a little more on the top of the mind.  Households may spend considerable time choosing whether to travel mainly by car or commute by train, or bicycle.  While the style of the car, and the speed and space it provides are the main criteria when buying a car, most households will at least consider fuel consumption as part of the discussion.

However, when talking to EDF at ICT4S 2014, an electrical utility that provides for 5 million people in UK, and most of France, they are talking more and more about a model where the household is seen as a manager of energy.  Indeed they are trying to shift their thinking from a one direction model to a more complex multi directional model.  The idea is that households can become more aware of their energy consumption, and even adjust their demand to ‘fit’ the supply.   They can also become co-creators of energy in the system.  For instance, households in UK are installing solar panels on their roofs.  Policy instruments such as ‘Feed in Tariffs’ have made it financially attractive for households to install solar.  This makes them co-creators of the electrical supply.  On remote Scottish islands, communities are supplied with a mix of locally generated energy, both large scale wind and micro scale wind and solar, with a grid based backup.  In this setup, if consumers use devices at a particular time of day their demand ‘matches’ the supply, and the system is more efficient (and produces less carbon dioxide).  This is more than energy efficiency as such, i.e. installing energy efficient light bulbs, which is a passive response that saves energy.  What the utilities are now talking about is an active engagement of consumers and helping people graduate through passive energy efficiency to active energy co-creation and management.

Is this shift in thinking at all relevant to Africa???  In Europe much of the discussion about being active co-managers of energy relies on Information Technology – installing smart meters that the consumer can watch and sensors to make ‘smart’ buildings.  On the surface it may seems ridiculous to ask whether energy consumers in Africa can utilise ICT and manage their energy.  Urban dwellers are constantly struggling with load shedding, they do not have ‘always on’ reliable electrical supplies – they are very aware of the supply and their own consumption.  For cooking they have to purchase charcoal, wood or LPG, and are therefore already making active energy choices.  For transport they often have few alternatives, they have to use whatever public/private transport is available and they cannot afford a car (let alone choose a fuel efficient car).

But as I listened to these European utilities discuss how to change passive consumers into active co-creators, I began to wonder whether Africa actually has a better starting point.  Consumers are very sensitive to fuel and energy pricing as it is often a large portion of their household expenditure.  They already attempt to manage their energy consumption due to the costs.  They are not like UK ‘Direct Debit’ consumers – rather they ‘feel’ their energy bills when they are connected, and they are constantly seeking alternative fuels when they are off grid.  Is there something African policy makers can do to leapfrog Europe and help citizens engage more directly with energy planning, to avoid creating ‘one directional’ utility provision?

Clean Energy Transitions – Can Africa Leapfrog?

Simon Batchelor from Gamos Ltd offers his thoughts on smart technology in sustainable energy, and the concept of “leapfrogging” in energy transitions.

I recently attended the conference ICT4S which focuses on using smart technology to manage energy sustainably.  ICT4S is a series of research conferences bringing together leading researchers, developers and government and industry representatives interested in using Information and Communication Technologies (ICT) as a tool to reach sustainability goals. The 1st ICT4S Conference was held in Zürich and attracted 250 participants from 40 countries. The theme of ICT4S 2014 held in Stockholm was “ICT and transformational change”. ‘Sustainable development needs transformational changes regarding both technology and patterns of production and consumption. This conference explores  and shapes the role of ICT in this process and assess positive and negative impacts of ICT on sustainability. ICT for sustainability is about utilizing the transformational power of ICT for making our world more sustainable: saving energy and material resources by creating more value from less physical input, increasing quality of life for ever more people without compromising future generations’ ability to meet their needs.’

Obviously this conference discusses the high tech end of the spectrum.  There are many actions that can be taken to move towards cleaner, more sustainable energy production and consumption.  Switching off lights to save energy can be done by changes in behaviour – people ensuring they switch the light off when leaving the building.  But humans are fallible, so many technicians propose connecting lights to sensors that switch them off when there is no movement.   This conference spent a lot of time discussing such high tech alternatives – smart buildings that monitored and managed energy.  Even smart cities that mapped where people were travelling to and organised the public transport accordingly.

So for instance, one of the papers talks about smart management of a building in the University of Groningen in the Netherlands.  Their paper “GreenMind – An Architecture and Realization for Energy Smart Buildings” states in the abstract that existing buildings are responsible for more than 40% of the world’s total primary energy consumption (although that seems a very high proportion?). They go on to say that current management systems fail to reduce unnecessary energy consumption and preserve user comfort at the same time mainly because they are unable to cope with dynamic changes caused by user’s interaction with the environment.  So they created a software architecture for energy smart buildings.  Experimental results carried out in the Bernoulli building, a 12.000 square meter building of the University of Groningen, show that the proposed solutions are able to save up to 56% of electricity used for lighting, at least 20% of electricity used for heating while the savings from controlling workstations as well as other appliances are 33% and 10%, respectively. overall, their solution is expected to save up to 28% of total energy consumption in buildings such as the Bernoulli building.

But what relevance has this to Africa?  Well, I listened to their Eurocentric presentations with an ear for Africa, and I was surprised by what I heard.   In Citizen observatories of water: Social innovation via eParticipation, I heard officials from the Netherlands discuss how difficult it is to get people to report problems.  “Advanced citizen observatories can enable a two-way communication paradigm between citizens and decision makers, potentially resulting in profound changes to existing flood risk management processes”.   That is; they have created community volunteers who are willing to report problems!  This has been a problem in the past for Africa, not because people are unwilling to get involved (as is the case in Europe) but because the distance to report a problem was too far.  A broken handpump may lie idle because the community do not have the bus fare to get to the district to report it.  However this is changing.  There are mobile phones and reporting problems can be just a phone call away.  Africa does not need sophisticated websites to collect data on problems, it needs only a willing ear to listen – ears which can be used in face to face conversation or through a simple phone call.

As I sat listening to various presentations, looking for the leapfrog technology; I was surprised.  I realised that what Africa had was a leapfrog society.  Citizens who are willing to talk to each other in community, and to engage with officials IF officials are willing to listen.   The matching of mobile phones and a willing society could result in big data that might really help transitions to clean energy.

Energy and Sustainable Urban Development CPD Course – Day 3

This blog is part of a series on the Energy and Sustainable Urban Development in Africa workshop, 17 – 21 November, 2014, University of Cape Town. For more details on the purpose of the workshop, see this blog.

CPD blog day 3 image 1 part 2Charcoal briquette production and use. Image: GVEP International

Day three of the CPD course concentrated on the household energy poverty challenge in African cities, focusing again on Uganda, Ghana and South Africa for case studies. Energy is a cross-cutting issue in the household services sector, affecting areas such as health and life expectancy, food service and nutrition, water supply, and other basic life experience factors.

Currently 43% of South African households are living in energy poverty, defined by the government as having a greater than 10% expenditure of total monthly income on energy services. Informal households make up approximately 70% of the 3.6 million households in the country without electricity access currently. A number of factors lie behind this: from a policy perspective, the inclining block tariff and free basic electricity policies in the South African electricity sector only apply to electrified households, meaning households without electricity services, often the poorest, do not benefit from these initiatives.

A lack of access to appropriate, clean, safe, sustainable energy sources also forces households across the three countries to use expensive, unsafe but accessible fuel choices, such as paraffin or traditional wood fuels.

Following presentations on the current situation, City of Cape Town municipal energy & climate change department’s representative Andrew Janisch gave details on the City’s low-income energy services strategy. 265,000-360,000 households are currently part of the backlog for electrification by the city, and 500,000 households in the city live on less than R3,600 per month. In the face of this challenge, the city has embarked on a wide array of initiatives to improve urban energy services for the poorest, from Solar Water Heater dissemination on social housing projects to improving coordination and innovation in service delivery models and approaches. Key opportunities and lessons from the strategy include the necessity of coordination between municipal departments on energy, from tertiary education to housing to labour. “Radical” approaches and risk-taking, including the need for agility and flexibility institutionally, were also highlighted as useful approaches and factors. Finally, the critical nature of making the financial and business case for sustainable energy and energy efficiency was once again highlighted, as a route to improving acceptance and buy-in from municipal departments.

CPD blog day 3 image 2

South African informal settlement. Image: Melusile Ndlovu

Professor Trevor Gaunt from the University of Cape Town led the afternoon session on informal settlement electrification. Challenges to the common perception of the goal of electrification were a key theme of this presentation, and Prof. Gaunt proposed considering electrification on a socioeconomic and social basis, as well as the purely economic case for development. In addition, in challenging the common perception and approach, arguments were made for grid electrification in peri-urban areas, given the fact that dense populations can benefit most from grid economies of scale, rather than using off-grid solutions in these circumstances.

The latter half of the afternoon was dedicated to two field trips for the workshop participants, to the Blackriver Parkway office complex, and the iShack project in Enkanini, an informal section of Kayamandi, Stellenbosch,, a sustainability and off-grid electrification organisation.

cpd day 3 image 3

Part of the Blackriver Parkway office park’s 1.2MW photovoltaic installation. Image: Daniel Kerr

Blackriver Parkway is leading the way in embedded generation in South Africa commercial institutions, and currently has 1.2MW of installed photovoltaic capacity over three buildings. This mitigates the vast majority of the complex’s grid electricity demand, and great care has been taken to optimise the installations to closely match the demand curve of the complex. This has been achieved partly on the supply-side, through panel positioning to provide constant peak outputs over the course of the day, as well as on the demand-side, through the managing company investing in user education and buy-in for the complex’s client organisations. As legislation in South Africa is preventing organisations being net electricity contributors to the national grid, the complex generates the vast majority of its needs across the day from this solar installation. This project has become the first to legally transmit electricity back into the City of Cape Town’s electrical distribution network.

The iShack project in Enkanini is designed to provide the gamut of sustainability options to informal settlement dwellers, acting as a demonstration on how informal settlements can be more energy efficient. This covers insulation, biogas, wastewater treatment and water collection/saving, as well as off-grid electricity solutions through solar home systems. More details on the iShack project can be found in the following blog.

Energy and Sustainable Urban Development CPD Course – Day 2

This blog is part of a series on the Energy and Sustainable Urban Development in Africa workshop, 17 – 21 November, 2014, University of Cape Town. For more details on the purpose of the workshop, see the Day 1 Blog.

Day 2 of the CPD course began with an introduction from SAMSET project partners as to the state of energy in African cities currently, focusing on the SAMSET partner municipalities. The overwhelming majority of energy in African cities across Sub-Saharan Africa is consumed in the buildings sector, with limited exceptions for large industrial towns/cities (such as Steve Tshwete in South Africa), and large transport hubs (such as Jinja in Uganda). Jinja’s status as a transport hub linking Kenya and western Uganda/Central Africa more broadly leads to significantly increased petrol and diesel consumption compared to equivalently-sized settlements, and large increases in carbon emissions for the transport sector as a result. This highlights the necessity once again of the local context in specific municipalities needing to be considered in effective energy transitions.

Modal split of transport use in Accra + South AfricaModal split of transport use in Accra, Ghana and South Africa as a whole. Source: SEA/ISSER

Municipalities’ own energy usage was also covered in the morning sessions, with particular emphasis on the “low-hanging fruit” still present in many Sub-Saharan African municipalities. SAMSET project team member Melusile Ndlovu presented on a variety of methods for increasing efficiency and reducing energy inputs for municipalities, following experience from a previous Sustainable Energy Africa energy efficiency potential modelling project done for the South African Cities Network (SACN). Municipal energy consumption assessment for this project was grouped under broad headings of bulk water supply and treatment, street and traffic lighting, municipal buildings, and vehicle fleets. The municipal vehicle fleet dominates the total energy savings potential (39%), with savings realisable from improved vehicle practices (the use of fuel efficient tyres, improved maintenance, tyre management, reduced mileage and awareness raising). Energy efficiency interventions in bulk water supply and wastewater treatment were said to hold the greatest electricity and carbon emissions savings potential, among the electricity consuming sectors in the modeled cities, (49% and 41% respectively), mainly due to the potential for more efficient pumping motors coupled with variable speed drives (VSDs). This session also emphasised the importance of municipalities leading by example, providing a foundation for private sector stakeholders to enter the energy efficiency sector.

Parallel sessions in the afternoon covered municipal waste and MSW-energy projects in the SA and Ghanaian context, as well as the household energy transition and household energy poverty. Three presentations or residential and commercial building design, energy consumption and efficiency were given, covering everything from green architecture in the African context for high-end commercial developments, to formalisation activities in the Joe Slovo settlement in Cape Town, and the effect that densification and green design has had on social housing energy consumption.

cpd blog day 2 buildings image 1Energy efficient commercial developments in Cape Town’s V&A Waterfront area. Images: Arup Ltd

Finally, SAMSET project partner Dr Simon Bawakyillenuo from the University of Ghana presented on the Ghanaian energy efficiency standards and labeling program in Ghana, covering topics from the ban of used air conditioner sales, to the government’s 6 million CFL unit dissemination program resulting in a 124 MW peak demand reduction for the country, to the promotion of mass transit and BRT, as well as fuel use reduction in the private vehicle fleet, through public education and promotion.

CPD Course Group SessionsGroup sessions at the Energy and Sustainable Urban Development CPD Course