Tag Archives: Transport

SDG 7 and SE4All: The role of Sub-Saharan Local Governments in Supporting Sustainable Energy Goals

This blog explores the role of Sub-Saharan African local governments can play in supporting the SDG energy-related goals and SE4All goals.  It suggests that they play a key role in this area given that they are often at the forefront of service delivery and end-user interaction. Yet overall the capacity and resource needs of local governments on the sub-continent remain under-prioritised by national governments, international development aid agendas, and the global research community.

The goals of SDG7 and SE4All are closely aligned, but there are also other SDG goals that are relevant to sustainable urban energy.  The SDG7 targets are:

  • By 2030, ensure universal access to affordable, reliable and modern energy services
  • By 2030, increase substantially the share of renewable energy in the global energy mix
  • By 2030, double the global rate of improvement in energy efficiency
  • By 2030, enhance international cooperation to facilitate access to clean energy research and technology
  • By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all

In addition, relevant goals from SDG11 (sustainable cities) include access to safe, affordable, accessible and sustainable transport systems, enhancing the capacity for integrated and sustainable human settlement planning, and addressing the impact of poor air quality and municipal waste. All of these are closely linked to sustainable energy futures.

Many Sub-Saharan African countries have, or intend to develop, plans whereby the SDG7 and SE4All goals can be pursued.  For example both Ghana and Uganda have such plans (Ghana SE4All Action Plan 2012, Uganda SE4All Action Agenda 2015), although it is notable that such key energy planning documents do not mention the transport sector – a major and fast growing energy consumer and emissions contributor. South Africa does not appear to have specific SE4All planning documents, although many initiatives exist in the country which are in pursuit of these objectives.

Numerous important sustainable energy initiatives are substantially linked to, or dependent on, national processes and mandates, or are best handled at a centralized national level (e.g. national power grid capacity upgrading, or changing regulatory frameworks around local generation).  Nevertheless, much lies within the mandate or direct influence of local governments, and globally there is an increasing emphasis on local players taking a stronger role in sustainable energy issues, as has been reflected at the recent COP gatherings in Paris and Marakesh.  In this regard, the work of the SAMSET project (Supporting sub-Saharan African Municipalities with Sustainable Energy Transitions) indicates that local governments on the sub-continent, and local research organisations, can play an important role in the following areas.

Local facilitation of household energy programmes which are driven by national or other players, such as cookstove, efficient appliance and electrification programmes: this includes collecting and providing information and data on needs and opportunities in local area; participating in implementation planning, community awareness raising and communication, and monitoring once implemented (all of these are best done at a local level); conducting research on impact and methodology improvements (Has it improved welfare? How could it have been better implemented? Costs vs benefits? Subsidy needs and justification? etc), and conducting research on impact on local small businesses (e.g. charcoal producers and retailers, appliance shops, cookstove manufacturers etc).

Promotion or facilitation of renewable energy programmes which need to be at least partially locally based (which may be driven locally or by national or other players), such as biogas, rooftop grid-connected solar PV, and solar water heating initiatives: this includes identification of local biogas opportunities (e.g. abattoir) and facilitating feasibility studies; engaging with power utility around local grid-connected solar PV pilot projects; engaging with local businesses (e.g. solar water heater, solar PV suppliers) regarding how to facilitate rollout and improve affordability; awareness raising and community engagement, and monitoring of implementation; research on impact and methodology improvements to maximize benefits; promotion and advocacy around fast-emerging options such as rooftop grid-connected solar PV; direct procurement of solar PV streetlights, and undertaking landfill gas feasibility studies and subsequent implementation pursuit.

Building energy efficiency promotion (local government often has direct mandates here): this includes developing local bylaws for commercial building energy efficiency; awareness raising around residential building energy efficiency (appropriate window use, shading etc), and organising training of building sector to improve ability for energy efficient construction.

Industrial energy efficiency promotion: including encouraging/incentivising audits (e.g. link with donor EE programmes), and facilitating training and awareness programmes locally.

Bringing sustainable energy concerns into spatial planning and transport planning: this includes introducing densification, corridor development, mixed use and other approaches into spatial plans; bringing tribal authorities (land owners) and municipal officials together in developing a shared vision around spatial futures, and researching and modeling the impact of different spatial and transport interventions on future energy, cost, social welfare, and economic activity – and engage with regional and national transport planning processes to introduce more optimal approaches.

Developing a more conducive enabling environment for implementation: this includes linking with support/donor programmes around supporting sustainable energy, and identifying how collaboration could work; researching and providing local data on energy status, problems, and opportunities; researching and communicating updates on implementation status as programmes are implemented, and evaluate their impact; capacity building of local government staff; programmatic partnerships between local government and local research institutions; developing networks amongst local governments for lessons exchange and mutual support, and developing links between local, regional and national players to facilitate integrated planning and coordinated approaches

Helping clarify the role of local government in sustainable energy, and identify effective methodologies to support them in fulfilling this potential: this includes researching the process of local government involvement and role in sustainable energy, and assess their challenges in this regard, researching approaches to supporting local government to engage effectively with sustainable energy promotion, and disseminate experience in this regard and potential for local government in promoting sustainable energy at workshops, conferences, meetings etc.

The role of local governments and local research organisations in moving to a more sustainable energy future as envisioned by the SDGs is clearly substantial. This has implications for development aid resource allocation and research funding channels.  Importantly, it is not enough to just fund research – a dual approach of partnerships with researchers who align directly with the needs of local governments, as well as a strong focus on real capacity building of local governments is important (note that information dissemination is not capacity building).  Programmes such as SAMSET are working in this area, but the needs are currently far greater than the enabling resources, by an order of magnitude at least.

Advertisements

Strategies for Sustainable Energy Transitions for Urban Sub-Saharan Africa – SETUSA 2017

The SAMSET project team is pleased to announce the hosting of the Strategies for Sustainable Energy Transitions for Urban Sub-Saharan Africa (SETUSA) Conference, which will be held at the Institute of Statistical, Social and Economic Research (ISSER) Conference Facility, University of Ghana, Legon, Accra, Ghana from the 19th – 20th June 2017.

SETUSA Banner 2

By 2050, it is envisaged that three out of five people from the estimated 2 billion population across Africa will be living in cities. Sub-Saharan African economies have grown 5.3 percent per annum in the past decade, triggering a dramatic increase in energy needs. Against this backdrop, it is estimated that by 2040 about 75% of the total energy consumption in Sub-Saharan Africa will be in urban areas with its associated implications on sustainable development.

Given these challenges on sustainable development, solutions for sustainable energy transitions in the Sub-Saharan African region are extremely important, and likely to have wide-ranging consequences on the sustainability of the region’s economies. This reality also imposes an urgent obligation on the continent to consider sourcing more of its abundant renewable energy resources to ensure long-term security of energy supply. Particularly, renewable energy resources — solar, wind, organic wastes – and their corresponding technologies offer more promises for sustainable energy futures than the conventional energy sources.

Therefore, there is the need first of all to raise awareness on renewable energy options and energy efficiency opportunities in urban areas, and to promote strategies which will maximise their benefits in providing secure, sustainable and affordable energy to meet the rising energy demand in the region’s fast-growing cities. Secondly, there is also the need for national as well as local government planners and policy makers to understand local urban contexts so that they can grasp the significant opportunities of engaging at a local level, as well as acquire the critical set of capacities and skills necessary to drive and influence the uptake of clean energy and efficient technologies.

The conference aims to bring together social scientists, policy-makers and entrepreneurs in the urban clean energy sphere, to discuss strategies for moving Sub-Saharan African economies to a more sustainable energy transition pathway. We are inviting papers on energy efficient buildings, energy efficiency and demand-side management in urban areas, renewable energy and energy supply in urban areas, electrification and access to modern energy in urban areas, waste to energy in urban areas, spatial planning and energy infrastructure in urban areas, energy and transportation in urban areas.

SETUSA Final Call for Papers (PDF)

Details of the call for papers and other information, can be found on the conference website: www.setusa.isser.edu.gh

More information on the SAMSET project can also be found on our homepage: www.samsetproject.net

Energy and Africities Summit 2015

Mark Borchers from Sustainable Energy Africa writes on  the recent Africities summit, and the role that SAMSET played in advancing sustainable energy themes at the summit.

The Africities Summit is held every 3 years and is possibly the foremost gathering of African local government politicians and officials on the African continent. It is also well attended by national government and other players such as local and international NGOs.

The SAMSET team attended the 2015 Africities Summit in Johannesburg in November, and SAMSET organized a session on Sustainable Energy in urban Sub-Saharan Africa: the Role of Local Government (see the background paper here). It was competently chaired by the Executive Mayor of Polokwane (a South African municipality), Cllr Thembi Nkadimeng, and key recommendations emerging were included in the Summit outputs.

samset blog 1.2.16 image

Panel Discussion, Africities Summit, Johannesburg, November 2015: Source: Mark Borchers

In addition, SAMSET, in partnership with SALGA, GIZ and the City of Johannesburg, organized fieldtrips to sustainable energy installations in the area – rooftop solar PV, landfill gas electricity generation, sewage methane electricity generation, mass solar water heater rollout, and public transport and spatial planning systems (click here for an example).

Overall, however, although our event was relatively well attended, it was interesting to me that energy and climate change did not seem to be a priority in the minds of the majority of attendees. There were a few energy and/or climate change sessions held, and these did not attract much attention compared with many other sessions. Let us not forget that this relatively low level of participation in the energy events is in the context of a great range of parallel sessions of central importance to local governments, such as those around transparent governance, demographics, financial resources, decentralization and relationships with tribal authorities. In addition, the energy related events were not the only ones with unexpectedly low attendance. Nevertheless, it was apparent to me that energy issues were more peripheral to local government than I had envisaged.

On reflection, this isn’t surprising. Dr Vincent Kitio of UN Habitat Nairobi hosted one such energy event at the 2015 Africities, and told me that a similar event he organized at the previous Africities was the first ever that focused on energy. So energy is a relatively new consideration for local governments. In most African countries energy is considered purely a national function, and the important influence of local government on sustainable energy, such as in transport and spatial planning and building design, and the renewable energy opportunities from waste management, amongst others, has still not been internalized by any sphere of government other than in a scattering of pioneering municipalities across the sub-continent.

Yet, as noted by the Cities Alliance “…as long as cities and local authorities are not put in a position to take initiatives and be at the forefront of actions to make African cities more inclusive, competitive, sustainable, safer and better managed, there is little chance that Africa will overcome the challenges posed by rapid urbanization” (Assessing the Institutional Environment of Local Governments in Africa, 2014, p10).

This need to capacitate and resource local government applies to their role in promoting sustainable energy as well, and is of added urgency given the monumental challenge of meeting SDG (Sustainable Development Goal) 7 in Sub-Saharan Africa. This is the area SAMSET is working in, but, given how far we still have to go, many more players and resources are needed to achieve the huge shifts necessary.

Bus Rapid Transit (BRT) and Town Planning

Bernard Tembo from UCL writes on the benefits of bus rapid transit (BRT) systems and their integration into new urban planning ventures.

In our last article, Africities, 2063, and Time, Simon Batchelor and Sumaya Mahomed looked at the disjoint in project timescales used by donors, CSOs etc. and the municipalities. They elaborated the complexity process and stages that projects have to go through for them to see light of day, stating that instead of the commonly used timescales of 1-3 years, most municipalities’ projects have a longer timescale of between 10 to 30 years. This article gives an observer perspective on how town planning approvals and the Bus Rapid Transit (BRT) systems in South African cities link.

Major South African municipalities have embarked on projects that will not only improve the efficiency of the transport network but also reduce emissions from the transport system. Municipalities such as Durban, Polokwane, Johannesburg and Cape Town are implementing BRT projects.

In Polokwane for instance, this project targets the areas that are densely populated. These area is currently serviced an inefficient public transport network and private transport. The City experiences loss of man-hours during peak time because of traffic jams. The City therefore, hopes that by providing a safe, reliable and efficient public transport network, the citizens’ social and economic livelihood could be improved.

d8dY7c2jxtCOdeTuRITV5Qrx58WdnJOksp2TMUcS1Mw

SAMSET team members and bus rapid transit lanes on a highway in Polokwane, South Africa. Image: Hlengiwe Radebe, SEA

The City of Cape Town on the other hand has an already functioning BRT system, not covering the whole City though. One of the objectives of this system is to encourage modal shift: from private to public transport system. In one section of Cape Town called the Northern Suburbs, there a new shopping mall called Bayside Mall. This mall is serviced by a well-functioning BRT system. However, despite availability of this functional public transport system, the shopping mall has a huge private car parking space (lot).

This raises questions about how well coordinated internal City development approvals and plans are: on one hand you want to encourage use of public transport yet on the other incentivising private transport system. It is an established fact that building infrastructure such as malls have a long life span (more than 40 years). And secondly and perhaps more importantly that because without putting in place stringent measures, private transport will continue to grow in the City. As private transport offers better safety and convenience for the user. Apart for convenience and safety, private transport is perspective as a symbol of esteemed status. With an increasing middle‑class, most transport users particularly those with enough disposal increase to shop in places like Bayside Mall will most likely desire to use private transport.

It would therefore be important that the City authorities relook at requirements for new developments before they approve building plans. One such requirement would be size customer parking space in shopping malls. I am aware that they are a lot of power and political games at play with such developments (shopping malls that is) but there is always a first.

This is an interesting challenge of synchronising long term plans with short term desires. A challenge that cannot be solved using a one size fits all approach, it requires consented efforts from all stakeholders.

Rivers, Technology and Society – Dipak Gyawali at the LCEDN Conference, Durham, 23rd – 24th March 2015

Simon Batchelor from Gamos writes on the relevance of Dipak Gyawali’s talk at the 4th LCEDN Conference to the SAMSET project.

I attended an interesting talk by Dipak Gyawali (Interdisciplinary Analysts, Nepal) at the LCEDN 4th Conference, Durham March 23rd and 24th 2015.  Dipak has been both minister of water and minister of energy for the government of Nepal in the past.  Now an academic studying and discussing the water, energy, food nexus, he is best known for his book Rivers, Technology and Society.  He raised a number of points in his talk that seemed particularly relevant to SAMSET.

Nepal is a country with great potential for hydro power and yet it has only 750MW and in recent years is having daily load shedding on 15 hours.  He focused on how long it takes to build a hydro dam, and the complexities of the ecosystem, the role of activists, and the conditionality of the loans.  Indeed he told the story of how he was involved in challenging the bad economics of the World Bank, arguing against a particular dam not from an environmental point of view (against which the World Bank would argue they would mitigate the environment effects, and then 15 years later we would all see that the mitigation didn’t work) but using economics to argue against the massive investment and delayed outcomes – bad economics was a convincing argument.

But arguing against something is not the way forward for a country.  So Dipak gave us some very concrete examples of possible ways forward.  He talked about the emerging role of decentralised electricity, which takes so much less time to plan and implement.  He noted that in addition to the 750MW national grid, there is also 750MW of Diesel (and Petrol) generators, being run by retail outlets, shopping centres and homes!  Where the grid costs 7 to 8 rupees per kWh, the people who feel they need control of their own electric destiny are paying between 30 to 80 rupees for their diesel generation.  This indicates a massive willingness to pay – if it is attached to reliability.  And Dipak pointed out that from first discussions to actual switching on in 2011, the 750Mw of hydro took more than 70 years; the 750MW of diesel has been thought of and switched on in the last 10 years.

800px-Kaligandaki_Hydro

“Kaligandaki Hydro” by Krish Dulal – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons – https://commons.wikimedia.org/wiki/File:Kaligandaki_Hydro.jpg#/media/File:Kaligandaki_Hydro.jpg

So how can we leverage this willingness to pay and this idea of decentralised but reliable electricity?  Of course his example is of carbon based diesel; it would be good if the decentralised reliable energy could come from clean energy.  In Nepal, there are regulatory difficulties in connecting renewables to the grid.  There are 46MW of solar PVs in the country, and studies quoted by Dipak suggest that with a reasonable and a more bureaucratic light feed in tariff, people would install 250MW within 6 months.  His views from Nepal illustrate how ‘business as usual’ can lead to a strange energy landscape, with people paying more than necessary for their energy when a change in policy and regulatory framework could rapidly change the scene.

He also talked about alternative models for funding smaller responses.  Small hydro has not really been very cost effective and yet stepping out of the box and looking at it from different angle can completely change that.  He talked about hydro and transport, and I confess that I thought ‘How is that possible?, how can you link hydro and transport?’.  In Nepal people carry items up mountains by foot, and it can take five hours or more to get goods up to a village.   Ropeways can offer an electric pulley transport system.     Connecting a hydro to a ropeway can make the hydro economically justifiable, working on the ropeway during the day and then its use for lighting in the evening for the community doesn’t even need to be charged.

In SAMSET we have noted the difference between South African municipalities who buy electricity wholesale and are responsible for and gain revenue from distribution, and Uganda and Ghana where municipalities don’t have such responsibility.  In Nepal, Dipak introduced communitisation of electricity, where communities were enabled to mobilise to purchase electricity wholesale and take responsibility for distribution.  Some 250 communities operate in this way now, and theft of electricity has dropped to zero (since the wholesale has to match the distribution and any community member attempting theft is soon identified and sanctioned).

Interestingly at this point Dipak spent some time on the political economy, noting that almost all sides of the political spectrum do not like the communitisation idea.  The Maoists were said to not like it because it wasn’t through the party system, and the far right didn’t like it because they liked to gift things to the people, in order to get their political support – the communitisation empowered the people outside the patronage system.  Dipak also mentioned that the centralists were lobbied by vested interested to not explore these interesting alternative models!

It was a very interesting talk.  I cannot guarantee I have remembered everything accurately, and numbers may be slightly off, but I felt particularly his focus on decentralised reliable energy, and the willingness of people to pay for reliability, was relevant to all our SAMSET locations.

Collaboration with Other Research Networks

David Mann from Uganda Martyrs University describes the recent Resilient Cities Roundtable in Kampala.

Recently, I had the opportunity to represent the SAMSET project at the Resilient Cities Roundtable organised at Makerere University by the Embassy of France in Kampala. The aim of the forum was to give a platform for the discussion of research around innovations to develop green infrastructure, to meet the growing demand for energy, and to reduce pollution in cities. Guests of honor included the Executive Director of Kampala Capital City Authority (KCCA) and the French Ambassador to Uganda.

This was also an opportunity to introduce the RUBAFRIQUE network which features scholars from around Africa engaged in collaborative research, open debate, and other activities to advance the understanding of urban environments and their socio-ecological dynamics to promote better-informed decision making. An explicit goal is to bridge the gap between Anglophone and Francophone researchers – hence the membership of universities in Cameroon, Chad, Cote d’Ivoire, France, Tanzania, Kenya, and Uganda.

In the SAMSET presentation I included an overview of the project objectives, partners, and outputs as well as preliminary results from the energy model for Jinja. Other interesting panelist presentations included Master Planning to cope with floods in Dar Es Salaam, Conservation of urban forests in Nairobi, Non-motorised urban transport planning in Uganda, and Local industrial-scale production of charcoal briquettes as an alternative to traditional wood charcoal. KCCA has partnered with the French technical research agency ADETEF to carry out an energy audit of street lighting and administrative buildings in the capital, the results of which could be very interesting for the SAMSET team.

We learned also that the University of Nairobi is launching a new Master’s Programme on Urbanisation which will include a module on Energy in Cities for which they are currently seeking qualified lecturers. It seems that there is a renewed interest in urban energy transitions and that academia is just catching up to the demand.

Shifting the Thinking in Electricity Provision

Simon Batchelor from Gamos writes on smart energy grids, encouraging energy consumer engagement in Africa, and the concept of the “smart consumer”.

It is very interesting reading the European Union’s goals around energy, and in particular the ideas around Smart Energy Grids.  They draw a lot from the works of Rochester Institute of Technology, which has produced the following diagram.

Could Energy Consumers in Africa Become Smarter?
Could energy consumers in Africa become smarter?

There is a move within Europe to make people more aware of energy, and for consumers to make more active choices in their energy consumption.  In general terms, researchers talk about how electricity provision has traditionally been a one directional and always on model.  European households sign up to a utility, and expect electricity to be available whenever they want.  In the UK, for instance, they often pay by direct debit (i.e. they don’t really think about the cost – it goes out automatically from their bank), and 63% of them never switch suppliers.  They ‘receive’ electrical energy, and the majority just don’t really think about it.  When it comes to transport, this is a little more on the top of the mind.  Households may spend considerable time choosing whether to travel mainly by car or commute by train, or bicycle.  While the style of the car, and the speed and space it provides are the main criteria when buying a car, most households will at least consider fuel consumption as part of the discussion.

However, when talking to EDF at ICT4S 2014, an electrical utility that provides for 5 million people in UK, and most of France, they are talking more and more about a model where the household is seen as a manager of energy.  Indeed they are trying to shift their thinking from a one direction model to a more complex multi directional model.  The idea is that households can become more aware of their energy consumption, and even adjust their demand to ‘fit’ the supply.   They can also become co-creators of energy in the system.  For instance, households in UK are installing solar panels on their roofs.  Policy instruments such as ‘Feed in Tariffs’ have made it financially attractive for households to install solar.  This makes them co-creators of the electrical supply.  On remote Scottish islands, communities are supplied with a mix of locally generated energy, both large scale wind and micro scale wind and solar, with a grid based backup.  In this setup, if consumers use devices at a particular time of day their demand ‘matches’ the supply, and the system is more efficient (and produces less carbon dioxide).  This is more than energy efficiency as such, i.e. installing energy efficient light bulbs, which is a passive response that saves energy.  What the utilities are now talking about is an active engagement of consumers and helping people graduate through passive energy efficiency to active energy co-creation and management.

Is this shift in thinking at all relevant to Africa???  In Europe much of the discussion about being active co-managers of energy relies on Information Technology – installing smart meters that the consumer can watch and sensors to make ‘smart’ buildings.  On the surface it may seems ridiculous to ask whether energy consumers in Africa can utilise ICT and manage their energy.  Urban dwellers are constantly struggling with load shedding, they do not have ‘always on’ reliable electrical supplies – they are very aware of the supply and their own consumption.  For cooking they have to purchase charcoal, wood or LPG, and are therefore already making active energy choices.  For transport they often have few alternatives, they have to use whatever public/private transport is available and they cannot afford a car (let alone choose a fuel efficient car).

But as I listened to these European utilities discuss how to change passive consumers into active co-creators, I began to wonder whether Africa actually has a better starting point.  Consumers are very sensitive to fuel and energy pricing as it is often a large portion of their household expenditure.  They already attempt to manage their energy consumption due to the costs.  They are not like UK ‘Direct Debit’ consumers – rather they ‘feel’ their energy bills when they are connected, and they are constantly seeking alternative fuels when they are off grid.  Is there something African policy makers can do to leapfrog Europe and help citizens engage more directly with energy planning, to avoid creating ‘one directional’ utility provision?