Category Archives: Gamos

Why SAMSET Phase 1 Has Been Unusual

As the end of Phase 1 of SAMSET passes, Simon Batchelor reflects on the important lessons he has learned from the programme of work.

I have worked in development for more than 30 years.  Grey hair and aching joints mean that I have experienced some of the highs and lows of development work.  Those times when a programmes contribution to development is washed away by a change in government, or times when simple ideas have grown to become policy and lift many off the poverty line.  Times when I have worked with governments and times when I have sat with communities, lived with the people.

And yet to me SAMSET brought new insight.  I would like to tell you why.

Municipality authorities – strange as it may seem, this was a level of governance that had passed me by in my career.  Admittedly I worked a lot in rural areas.  Back in the eighties when I started, everyone described Africa as dependent on agriculture, and rural livelihood improvements were the key.  So I worked with ‘district’ authorities but not so much with municipalities.  Now Africa has changed and will continue to change rapidly.  Urban environments are the key challenge.  Creating a space for urban based livelihoods, with all the complexity of transport systems and energy consumption.  To me the municipal partners (in Awutu Sena East and Ga East Ghana; Jinja and Kasese Uganda, and Polokwane and Cape Town South Africa), have been a delight to work with.  And consistent – they attend meetings and the same people attend meetings!  How many times have I spent in my career developing a relationship with a government official only for them to be moved into a different ministry?  And they take action – seeing some easy wins they have the authority to change building regulations or advice, and to purchase clean energy street furniture.  There are indeed capacity challenges within municipalities, and indeed all the country wide problems of corruption are also within their processes; but when I consider some of the people I have worked with over the years, I say that our municipal partners were a delight to work with and I think we managed to achieve a great deal as a research project.

30 year time horizons – it is a sad reality of the development sector that people work in three or five year projects.  Even large national programmes still set unrealistic targets in unrealistically short time spans.  In SAMSET we have worked with municipalities to collect data, model it for population growth over 30 to 50 years, and then discussed the future.  (For example Ga East LEAP Modelling Technical Report (ERC) (2017) and Jinja LEAP Modelling Technical Report (May 2017) (ERC).  Our partners have considered what action they needed to take now to do something other than business as usual and to generate different futures for their cities.  To some people the idea of thinking 50 years into the future is difficult.  They say the pace of change of technology is such that we cannot know what it might look like.  And yet at the same time others will argue that we have to.  That the longer term visionaries are the ones who take small steps now which shape that technological change and address the environmental concerns (eg. Awutu Senya East Municipality Energy Futures Report 2015 (October 2015) (UoGhana)).  It is true that self driving cars may change the shape of our cities.  But it is also true that most cities in Africa will double in size within 10 years (due to population growth and inward migration).  In SAMSET the municipality partners ‘stepped up to the plate’ (a baseball metaphor), and took a swing at looking at the future and taking action for the longer term future.  For me this stood in contrast from so much experience of short term projects.

Evidence based decision making – has become a common phrase and yet in reality there is little actual data and what there is is rarely used.  That’s why SAMSET was encouraging in my eyes.  It started with data gathering.  Not an easy task – to get granular data for a municipality means going and measuring it in partnership with the municipality.  National statistics are too large too lumpy to enable municipal authorities to make sensible decisions for their own location.  They tend to rely on feedback from citizens and staff to decide what to do.  So to actually go and get the right data for making decisions was to me a great step forward.

There are probably other things that have made SAMSET noticeable in my eyes, but these are the three that come to mind as I sit to write this.  If all my future projects had a sensible long term horizon, a level of governance with consistency in its personnel and an ability to reflect and act, and was willing to gather the right evidence in order to make a sensible decision – I would be happy.

Advertisements

SAMSET Releases a New Guide to Clean Energy Transitions for Sub Saharan Municipalities

Simon Batchelor from Gamos writes on the recently-released Guidelines to Clean Energy document for SAMSET.

As a part of our ongoing work with Sub Saharan Municipalities in Uganda and Ghana, the research team have brought together some basic information on clean energy transitions.  “GUIDELINES TO CLEAN ENERGY:- A PRACTICAL GUIDE FOR SUB SAHARAN AFRICAN MUNICIPALITIES (2017)”. The Guide is intended to help decision makers in Municipalities in Sub Saharan Africa to consider ways in which they could make their city utilize cleaner energy. Its foreword states “This manual has been designed for use by city officials and planners working in sub-Saharan Africa. It is a practical handbook, which identifies easy to achieve energy interventions that will save money (for cities, businesses and households), promote local economic development, and enhance the sustainable profile of a city. This manual is specifically aimed as a support tool to achieve the implementation of key interventions within municipalities across sub-Saharan Africa.”

The 200 page document starts with a call for cleaner energy. Its opening chapter draws on various sources to show how our ongoing use of fossil fuels is linked to climate change. The historical contribution of Sub Saharan Africa to global climate change is small compared to the developed countries, however over the next 30 years it will increase its contribution particularly if ‘Business as Usual’ is continued. The opening chapters discuss how this global problem is the responsibility of all, and how municipalities could take a decision to move towards clean energy that might contribute to climate change mitigation in the long term.

The guide, however, is titled ‘A Practical Guide’ and we felt it important to move quickly on from the macro picture of global challenges to the specifics of what a municipality might do. Each of the chapters has the same format –

  • An overview, which includes some basic description of technology and social change options;
  • The Case; which discusses how simple changes can make considerable differences
  • Potential for Rollout; discussing the realities of Sub Saharan African life and whether the technology could be introduced
  • Barriers to implementation (and effort to resolve); an attempt to anticipate barriers, and suggestions of what might be done
  • How to go about implementation; some suggestions for action
  • Case Studies; some Sub Saharan African case studies to illustrate the relevance and possibilities of the chapters subject.

Chapter 5 starts with Energy efficient lighting a technology that is relatively easy to implement. LED bulbs have become common and simple action ensuring they are available in the market and ‘encouraged’ among consumers can save significant amount of electricity (compared to older lamps). Chapter 6 broadens the picture to include energy efficient buildings.Ideally these need some design at the very start, but the chapter also makes suggestion for retrofitting that can lower energy consumption. Chapter 7 considers public transport. Vehicles can not only consume considerable amounts of fossil fuel, but create localized pollution. The chapter focuses on the possibilities of public transport as an alternative to everyone getting their own car. Chapter 8 considers cooking. While it may seem that municipalities have little to say about the choice of domestic cooking fuels, the ongoing use of biomass (charcoal) in urban areas contributes to local pollution, kitchen pollution and global pollution. Municipalities can undertake various strategies to assist consumers to move toward genuinely clean cooking.

Waste to energy in Chapter 9 is very much a municipality concern. Collection of waste is a challenge to many SSA municipalities, and the possibility of converting it to useful energy is worth consideration. Chapter 10 talks about Solar Photovoltaics. Solar PV has come down in price considerably over the last few years and this chapter discusses the possibilities – from solar farms contributing to the national grid, to mini and micro grids, to solar home systems.

Renewable purchase agreements are a policy tool that can encourage clean energy. Chapter 11 discusses these, pointing the municipality players to consider the policy instruments available in their country. Chapter 11 touches on carbon trading – this again is effectively a policy instrument that municipalities might consider using. And finally , a last chapter summaries but does not deal in depth, some ideas on Concentrated Solar Power, Wind Power and Solar Water Heaters.

The guide ends with a call to action, to share ideas with colleagues, and to take small steps that help us tread lightly on the earth. “We may have discussed many ideas, technologies, approaches, regulations, policies, feed in tariffs, low energy light bulbs, and energy efficient buildings among others, but ultimately consumption and sustainability come down to you. Humanity has a large footprint on this world and currently we are not treading lightly. We consume; we consume fossil fuel, we create so much impact that our climate is changing, we build cities that can be seen from space; we are heavy on the earth.”

An experience of Dar es Salaam bus rapid transit system – DART

Simon Batchelor of Gamos writes on his experiences with the Dar Es Salaam rapid transit system (the DART).

When SAMSET started in 2014, its first network meeting was in Dar Es Salaam alongside an ICLEI conference.  At the conference there was an offering by the mayor of Dar for attendees to have a field trip to see the Dar es Salaam bus rapid transit system called DART.  At that time there was little more than road works to see, but what was impressive was the ambition to carve out whole highways that would be bus only roads.

1

Morocco BRT terminal in Dar Es Salaam. Image: Simon Batchelor

Like most city wide infrastructure projects, the system has been in the planning for more than a decade.  Discussed in 2003, JICA encouraged Dar municipality to consider the system, and designs started in about 2005.  Consultations with the public and those affected by the construction, social and environment impact studies, ongoing economic feasibility studies all take time, so it wasn’t until 2012 that the road works started to appear.  It will eventually be 6 phases, but phase 1 was completed in April 2015 (about 6 months after our first network meeting – so we didn’t get to ride it then).

When looking for some of the facts surrounding the system, I came across a document – “What necessitated establishment of a BRT system in Dar es Salaam?”.  Their answer…”When you have a swelling city population and you find yourself in the teeth of agonizing transport problems and hitches, the logical safety valve is to have a type of public transport that uses a passenger medium uninterrupted. As the name suggests BRT is a mode of public transport that uses rapid trunk buses. BRT is a huge-capacity transport solution to public transport problems the City of Dar es Salaam faces. The BRT system operates in a way quite similar to a tramway. In the latter passengers board trams while in the former passengers ride on huge buses plying on exclusive lanes.”  (My emphasis)

2

Interior of one of the DART buses. Image: Simon Batchelor

So when we were in Dar for other business last week, we took the opportunity to ride the buses. Phase 1 is said to be a single 23 km line from a station called Kimara Terminal down to the CBD.  However we found ourselves at the end of a branch line, at Morroco Terminal.  The system is said to have cost around $180 million so far.  Since there are branches one has to choose the right bus. We got on at Morroco, and were advised to take the No 3 bus in order to get to the Zanizbar ferry terminal.

3

Proposed full route of the DART. Image: http://ansoncfit.com/wp-content/uploads/DART-Phase-1-e13033701609191.png 

4

Citizens riding the DART bus. Image: Simon Batchelor

It runs some 140 Chinese made buses that in themselves are unusual.  Each station or terminal sits raised at about stomach height.  The buses have floors and doors at that height on the right hand side.  On the other side for emergencies they have one door that has steps down to road level – mainly for the driver since no one ever gets on that left hand side.

5

Bus terminal in Dar Es Salaam. Image: Simon Batchelor

The terminals have gates and one purchases either a seasonal ticket and gets a Contactless smart card or at the counter and gets a printed ticket with a bar graphic.  Placing the ticket under the gate scanner gets you through the gate or like many other rapid transport systems in cities one taps the card and the price of the journey is taken from it.  At the moment there are staff to help people get through the gates as the whole system is still being nurtured among the general population.

6

Passengers using a ticket turnstile. Image: Simon Batchelor

We entered the bus at one end of the line (Morroco), and found a clean air conditioned No 3 bus that would not have felt out of place in any modern bustling city.  By mid journey the bus was full and the heat radiated by so many bodies had overwhelmed the air conditioning and people had opened the windows.  This was not rush hour but was middle of the day, so I can imagine it gets pretty cramped at peak times.  However while it declined in comfort by the end of the journey, it was indeed quick.   We had sat in a taxi the day before for an hour in a very slow moving traffic jam; this trip took us only 20 minutes.  It felt impressive to look ahead of the bus and see the completely open highway.

7

Passengers on the DART. Image: Simon Batchelor

We have talked a lot in this blog about the growing needs of municipalities, and SAMSET is focused on long term solutions.  Dar es Salaam is a fast growing commercial capital, producing 70 percent of Tanzania’s gross domestic product and is the hub of economic activity with an estimated daytime population of close to six million.  Analysis in 2014 showed that some private 5,200 passenger buses were operating on the city roads, and traffic congestion was already having an impact on the economic well-being of the city.  A metro was not possible, and the rapid bus system seemed viable.  It is said it will transport 300,000 a day in this interim phase.

Having now ridden the system, I can see how it can avoid the traffic problems.  I think it probably already gets overwhelmed in rush hour and be uncomfortable to ride at those times (much like most mass transit systems in most capital cities!  I try to avoid the London underground at peak times!).  I wish the municipality of Dar the best for its subsequent phases and will be interested to see its longer term use of lower carbon buses.

Ongoing ‘Decreasing International Solar PV Prices’.

Simon Batchelor from Gamos writes to continue the theme of global solar PV prices, and their continuing price reduction.

In his blog on Decentralised Solar PV Acceleration in South Africa, my colleague, Mark Borchers, noted that “Where national grid power prices are rising fast, as is the case in many African countries, the decreasing international solar PV prices will sooner or later lead to a situation where it makes sense for businesses to install their own grid-connected rooftop systems.”  In a blog last year “Will Solar Photovoltaics Continue to Decrease their Cost?” we shared some insights into the ‘decreasing international solar PV prices’.

It is well worth keeping an eye on this price descent of solar, and this blog takes the opportunity to refer to a new report by IRENA – The International Renewable Energy Agency. The report “THE POWER TO CHANGE: SOLAR AND WIND COST REDUCTION POTENTIAL TO 2025” focuses on utility scaled activities, nevertheless they present an up to date analysis of solar photovoltaics and suggestions of costs through to 2025.

They confirm that solar PV modules have high learning rates (i.e. cost reductions as technology manufacturers accumulate experience) (18% to 22%) and rapid deployment – there was around 40% growth in cumulative installed capacity in each of 2012 and 2013 and around 30% in 2014 and 2015. These factors resulted in PV module prices declining by around 80% between the end of 2009 and the end of 2015. In 2011, price declines accelerated as oversupply created a buyer’s market. The price declines then slowed between 2013 and 2015 as manufacturer margins reached more sustainable levels and trade disputes set price floors in some markets. Current country average module prices range from USD 0.52 to USD 0.72/W. They believe that module costs are set to continue to fall, and they state that by their reckoning, module costs will have dropped by 42% by 2025.

However these module costs are only part of the system costs. IRENA shows that there are considerable gains to be made by reducing all the other system costs. In their figure 2 (see below) they show some of the balance of system costs for various countries of utility scale PV projects. It is interesting to note that the difference between China and Germany on the one hand and Australia and Japan on the other is a factor of 3. The report suggests that there is considerable room for reducing these balance of system costs further and it is improved efficiencies of installation that will continue to drive the system prices down.

The report also considers the levelised cost of electricity (LCOE), which takes into account the lifetime of the system, the ongoing operation and maintenance costs, as well as the capital investment. They note that the LCOE of solar PV fell 58% between 2010-15, making it increasingly competitive at utility scale. Of course looking ahead there are many unknowns, however their predictions are that utility scale PV could have project costs in the range of USD 0.03 to USD 0.12/kWh by 2025.

This general trend highlighted by the report in the context of utility scale PV nevertheless supports Mark Borchers’ observations on shopping malls and PV. He noted that “a combination of steadily reducing international solar PV prices and consistently higher-than-inflation electricity price hikes” was behind the decision to put solar PV on malls, and that “such installations are now a financial no-brainer – giving an 18% internal rate of return (IRR) with a 5 year payback”. While the IRENA report had a slightly different focus (scale of PV), it nevertheless confirms that PV is likely to continue its price descent, making the IRR for shopping malls in South Africa even better in the coming years.

Mark ends his blog by stating that since this is financially worthwhile, and will inevitably become even more so, he calls for urban areas to think about the “big implications for sustainable energy planning”. We echo that call.

gamosjune2016bloggraph

Smart Power – Smart Storage

Simon Batchelor from Gamos writes on the increasing role that smart energy storage solutions have in developing sustainable urban energy.

On Friday 4th March 2016, the UK government published an interesting report on ‘Smart Power’ which might be relevant to the forward thinking municipalities of SAMSET. This was a review where the the (UK) National Infrastructure Commission was asked to consider how the UK can better balance supply and demand, aiming towards an electricity market where prices are reflective of costs to the overall system. Its findings have some relevance to the longer term planning for the municipalities involved in SAMSET.

‘Smart power’ makes practical recommendations to improving the electricity market of UK – not new subsidies or substantial public spending but three key recommendations. One of the three key recommendations is “to encourage network owners to use storage.” The Smart power report found that the flexible smart power system recommended by the National Infrastructure Commission could result in savings of up to £8.1 billion a year by 2030.

SBatch samset image1 mar2016

The strategic use of storage could create an operational flexibility that would “significantly reduce the integration cost of intermittent renewables, to the point where their whole-system cost makes them a more attractive expansion”. Increasing flexibility was found to be “low-regret option”, reducing the overall cost while maintaining security of supply requirements.

Why is storage a key to unlocking the UK grid? Storage allows consumers and suppliers to take energy and store it so that it can be used when it is most needed. In the UK electricity prices vary throughout the day, and across the year. When demand is higher, prices rise. Storage technology allows consumers to buy electricity when it is cheap and use it later when it is needed. There are a number of ways electricity can be stored. Today, the UKs main source of storage is through pumped hydro – simply converting electric energy into potential energy and back by moving water up and down a hill. There is, however, an increasing range of alternative ways to store energy including; chemical batteries, compressed air and supercapacitors.

SBatch samset image2 mar2016

Electricity has historically been difficult and expensive to store. However, over the last decade there has been a great deal of innovation in electricity storage technologies driven mostly by consumer electronics like mobile phones and investment in electric vehicles. This rapidly evolving environment has driven innovation and reduced costs. For example, the cost of lithium ion batteries has decreased from more than $3,000/kWh in 1990 to less than $200/ kWh today. These technologies are now on the verge of being able to compete with power stations for some of the services they provide. Crucially, storage technology will not need subsidies to be attractive to investors – businesses are already queuing up to invest.

We are not talking small batteries here. The report gives two examples. The ‘Kilroot Advancion® Energy Storage Array’ is based in Carrickfergus in Northern Ireland and offers 10 MW of interconnected energy storage, equivalent to 20 MW flexible resource. This storage – which is comprised of over 53,000 batteries – is able to respond to changes in the grid in less than a second, providing a very fast response ancillary service to help balance the electricity system at times of high demand. The array is a fully commercial project, with no additional costs for consumers. The ‘Big Battery’ in Leighton Buzzard scheme features a 6MW/10MWh storage solution comprising approximately 50,000 lithium ion batteries, which has enabled UK Power Networks to manage electricity demand at peak times without building excess capacity.

It is the idea that storage unlocks some of the generating potential of the middle of the night that may prove attractive. With the right policy environment, battery costs could enable municipalities to mitigate power outages, and shave off peak loading. This would give everyone a better experience with their electricity supply, enable more renewables to be in the system, and according to the report, this could be done at no additional cost to the consumers. Most grid profiles are similar to the one above for the UK. There is low use in the middle of the night, increasing during the day, and with a peak demand in the early evening as lights, televisions and cooking come on. This is true even for sub Saharan Africa as the daily load curves for Kenya illustrates. Using and storing that ‘middle of the night’ energy could improve consumers experience without creating new generating capacity.

SB 3dgraph image3 mar2016

Ref for graphic ENERGY EFFICIENCY FROM THE KENYA POWER PERSPECTIVE Margaret Kanini 2013

Bring Me Sunshine…

Simon Batchelor from Gamos writes on the Witkop Solar Farm in Limpopo Province, South Africa,

At our recent network meeting in Polokwane, we visited Witkop Solar Farm which is within the municipality’s boundaries.  Witkop is a 30 megawatt solar farm built and maintained by SunEdison in the province of Limpopo of South Africa.  There is remarkably little on the internet to describe this installation although that may be a function of the ease of installing and running solar farms?  It was part of South Africa’s push to get Independent Power Producers to install renewable energy.   In an overview of the processes involved, Eberhard, Kolker & Leigland  (2014) note the difference between South Africa’s competitive tender approach and a Feed in Tariff as used in many other countries.   “South Africa occupies a central position in the global debate regarding the most effective policy instruments to accelerate and sustain private investment in renewable energy. In 2009, the government began exploring feed-in tariffs (FITs) for renewable energy, but these were later rejected in favor of competitive tenders. The resulting program, now known as the Renewable Energy Independent Power Producer Procurement Program (REIPPPP), has successfully channeled substantial private sector expertise and investment into grid-connected renewable energy in South Africa at competitive prices.”

Witkop was cited in the preferred bids in 2011 by the South African government, named in the pipeline in 2012, and construction started in 2013. As part of the terms of the financing agreement, power generated from the two facilities will be purchased by Eskom, the national utility in South Africa, through a 20-year power purchase agreement.

As part of our network meeting, SAMSET created a video ‘Aide Memoire’ of the visit, as seen below.

Why Waste That Energy?

Simon Batchelor from Gamos writes on the SAMSET team’s visit to Ekurhuleni Metropolitan Municipality’s Simmer and Jack waste-to-energy facility.

As a part of the Africities Summit 2015 (Mark Borchers’ previous blog), we visited the Simmer and Jack Landfill site to see an example of a waste to energy facility. Ekurhuleni Metropolitan Municipality is not part of the SAMSET programme of work, however they were kind enough to host a site visit to the 1MW landfill gas to electricity plant at the Simmer and Jack landfill site in Germiston, Johannesburg. This project, which was commissioned in September 2014, has reduced electricity purchases from Eskom by 7 GWh/year. The gas capture has also greatly improved local air quality and the environmental conditions of the communities living alongside or nearby the site.

The work in Germiston had already been used as a case study for the Urban Energy Support programme, funded by the South African Local Government Association (SALGA) in partnership with SAGEN. SAGEN is the South African German Energy Programme implemented by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ). Sustainable Energy Africa (SEA) was commissioned by GIZ to develop the case studies, in close partnership with SALGA and GIZ.

We compiled a video made up of information from the case study and video footage taken during the site visit, which we hope will enhance the original case study.

At a recent professional development meeting for DFID (UK Aid) staff (Feb 2016), the video was shown and used as a discussion point on waste by Prof D Wilson, Visiting Professor in Waste Management at Imperial College London. Many of the SAMSET municipalities are concerned with waste management and as cities grow it is an increasing problem. Perhaps more of this utilization of the gas would turn a problem into an opportunity.