Tag Archives: Electrification

Strategies for Sustainable Energy Transitions for Urban Sub-Saharan Africa – SETUSA 2017

The SAMSET project team is pleased to announce the hosting of the Strategies for Sustainable Energy Transitions for Urban Sub-Saharan Africa (SETUSA) Conference, which will be held at the Institute of Statistical, Social and Economic Research (ISSER) Conference Facility, University of Ghana, Legon, Accra, Ghana from the 19th – 20th June 2017.

SETUSA Banner 2

By 2050, it is envisaged that three out of five people from the estimated 2 billion population across Africa will be living in cities. Sub-Saharan African economies have grown 5.3 percent per annum in the past decade, triggering a dramatic increase in energy needs. Against this backdrop, it is estimated that by 2040 about 75% of the total energy consumption in Sub-Saharan Africa will be in urban areas with its associated implications on sustainable development.

Given these challenges on sustainable development, solutions for sustainable energy transitions in the Sub-Saharan African region are extremely important, and likely to have wide-ranging consequences on the sustainability of the region’s economies. This reality also imposes an urgent obligation on the continent to consider sourcing more of its abundant renewable energy resources to ensure long-term security of energy supply. Particularly, renewable energy resources — solar, wind, organic wastes – and their corresponding technologies offer more promises for sustainable energy futures than the conventional energy sources.

Therefore, there is the need first of all to raise awareness on renewable energy options and energy efficiency opportunities in urban areas, and to promote strategies which will maximise their benefits in providing secure, sustainable and affordable energy to meet the rising energy demand in the region’s fast-growing cities. Secondly, there is also the need for national as well as local government planners and policy makers to understand local urban contexts so that they can grasp the significant opportunities of engaging at a local level, as well as acquire the critical set of capacities and skills necessary to drive and influence the uptake of clean energy and efficient technologies.

The conference aims to bring together social scientists, policy-makers and entrepreneurs in the urban clean energy sphere, to discuss strategies for moving Sub-Saharan African economies to a more sustainable energy transition pathway. We are inviting papers on energy efficient buildings, energy efficiency and demand-side management in urban areas, renewable energy and energy supply in urban areas, electrification and access to modern energy in urban areas, waste to energy in urban areas, spatial planning and energy infrastructure in urban areas, energy and transportation in urban areas.

SETUSA Final Call for Papers (PDF)

Details of the call for papers and other information, can be found on the conference website: www.setusa.isser.edu.gh

More information on the SAMSET project can also be found on our homepage: www.samsetproject.net

Informal settlements: to electrify or not?

Xavier Lemaire recently wrote a guest blog for UrbanAfrica.net representing the SAMSET projcet research. The blog is reproduced here in its entirety.

Informal settlements constitute a major part of African cities: more than two thirds of the urban population of sub-Saharan Africa lives in slums. In spite of evidence to the contrary, such settlements are typically considered temporary aberrations by governments and are not recognised as permanent features of the urban landscape. As a result the needs of their inhabitants tend to be ignored by urban policy-makers.

This is notably the case when it comes to the electrification of informal settlements, which are seldom included in electrification efforts. The attitude of electricity utilities and municipal electricity distributors to the inevitable flourishing of “illegal” connections in these areas is at best to ignore them, or, when the situation deteriorates too much, to engage in repressive measures, such as disconnections, harassment, fines and/or imprisonment for what is considered as electricity theft.

Some authorities still take refuge behind electricity industry norms and spatial planning schemes that are rooted in the colonial era and designed to favour the wealthy, effectively denying the poorest rights to such services.

Municipalities and utilities do not want to legitimise informal settlements by electrifying these ‘illegal’ structures. They also do not want to risk increasing a low-income customer base who are expected to be unreliable payers. Furthermore, they do not want to electrify areas where there are higher technical risks and safety concerns for which they could be held responsible.

The situation leaves few alternatives for informal settlement inhabitants: to move (where?), to remain without modern energy, or to establish electricity connections themselves. In the human endeavour to improve their living conditions, it is not surprising that the latter option prevails. Even if most inhabitants can afford to pay for their connection and have demonstrated a willingness to pay, the authorities do not electrify such areas as a rule, and thus residents are pushed into illegality in their attempts to improve their welfare.

The proliferation of illegal connections comes with numerous problems, such as greater safety and fire hazard risks linked to sub-standard connections, overload of networks, loss of revenue for utilities (so called ‘non-technical’ losses), and economic exploitation of the poorest by informal resellers of electricity, who may charge more than double the official electricity price. By denying access to electricity in informal settlements, utilities create situations where both the welfare of citizens and the effective functioning of the utility are compromised.

The attitude of municipalities and utilities to informal settlement electrification has been demonstrated to be unnecessary and far too conservative in places where informal electrification has been pursued. Where countries have adopted a more flexible, appropriate approach to this dilemma there have been significant benefits for both residents and utilities.

The case of Cape Town

After the end of apartheid, South African municipal electricity distributors and the national utility Eskom developed innovative approaches to low-income household electrification, which they extended to informal settlements over time. Cape Town municipality has been one of the pioneers in this field.

Key aspects of the approach used by the Cape Town municipal distributor are as follows:

First, it demarcates areas where electrification is materially possible from those where it is not feasible, by adopting broad criteria which include a maximum of inhabitants. While the dense configuration of many settlements can indeed restrict access by electrification vehicles and equipment, with aerial electrification most parts of a settlement can be reached. However settlements on privately-owned land are not electrified, as the law prevents municipalities from installing assets on such land. Floodplains are still categorised as unsuitable for electrification, although some experts consider that these areas can be electrified as long the network is kept out of reach of water and disconnection points enable operators to isolate specific areas when flooding occurs.

Secondly, appropriate electrification technologies are used which enable all households to be reached, such as the ‘maypole’ approach (as the name suggests, houses are connected from a central pole in a radial ‘maypole’ fashion), and external pole-mounted meters are used which communicate with in-house displays, making it easy for officials to disconnect, check for faults and identify tampering. These innovative technologies and approaches have been important enablers to informal area electrification, as they have proven themselves to be safe and cost-effective.

Thirdly, tariffs have been adapted for this context, with small connection fees which are not collected up-front but paid over an extended time, and pre-paid-meters both protecting the utility revenue as well as enabling low-income households to purchase small amounts to suit their pocket, as the poor often have a variable income.

Fourth, local communities are engaged with extensively during the electrification planning and implementation process. This engagement goes beyond a superficial survey and implies time and effort from the utility to identify concerns and interact on a regular basis with the community-chosen representatives, as well as directly with the inhabitants to be electrified.

This integrated approach to informal settlement electrification has spread access to electricity to almost all households in Cape Town, with associated welfare benefits for its citizens. Using technologies, standards and approaches imported from the developed world, as was done initially in South Africa, would have constrained such access significantly.

One of the surveys conducted within the Supporting African Municipalities with Sustainable Energy Transition (SAMSET) project, as part of research running into 2017, compares the approach taken in the six municipal partners of the project to see how best practices could be replicated in other African municipalities.

Xavier Lemaire is Senior Research Associate at the University College London – Energy Institute. He is co-leader of the SAMSET (Supporting African Municipalities in Sustainable Energy Transitions) project. A sociologist and socio-economist, his research interests focus on clean energy policies, energy transition and energy access in the Global South. Contact: x.lemaire@ucl.ac.uk

References

Informal Electrification in South Africa: Experiences, Opportunities and Challenges, 2012. Sustainable Energy Africa, Cape Town. Available at: http://www.cityenergy.org.za/uploads/resource_116.pdf

Policy guidelines for the Electrification of Un-proclaimed Areas, DoE South Africa. Available at: http://www.energy.gov.za/files/policies/electrification/unproclaimed%20areas%20policy%202011.12.pdf

Cape Town Electricity Department Meeting – 11th November 2014

Xavier Lemaire and Daniel Kerr from UCL, and Yachika Reddy from SEA, recently met with Maurisha Hammer and Zwelethu Zulu, representatives from the Cape Town Municipal Electricity Department’s Electrification Division, to discuss the city’s approach to the electrification of informal settlements, and the challenges facing informal settlement electrification across South Africa.

The Cape Town approach to informal settlement electrification is pioneering compared to the approaches of other countries and metropolitan areas. Informal settlement electrification is under a separate project management procedure to that of formal settlement electrification in the municipality. Formal settlements are project managed by developers, housing associations and “Section 21” companies, which are non-profit housing project developers. Informal settlement electrification is directly project-managed by the Electrification Department, and projects are selected in-situ, i.e. any existing informal settlement has the potential to be electrified under the Council approved Residential Electricity Reticulation policy that requires that  it is a stable settlement (i.e. not transient) and has not been identified for upgrading or relocation . To be considered for electrification, an informal settlement may not be situated

  • in a road or rail reserve or in a servitude, unless otherwise permitted by land owner;
  • in an area below the 1:50 year flood return period contour;
  • in a storm water detention pond; or
  • on unstable land.

This approach is in contrast to other countries’ and cities’ experiences with informal settlement electrification. For example, while cases exist for “slum” electrification in India (notably Chennai and Mumbai) and Thailand (Bangkok), these are processes dependant on the formalisation of property rights for informal dwellers. Part of the rationale behind the Cape Town approach is to do with the constitutional mandate for municipalities in South Africa to provide basic municipal services (electricity, water, sanitation, and refuse management) to all inhabitants of the municipality. Whilst funding constraints prevent the fulfilment of this mandate in many municipalities, Cape Town seems to be succeeding in doing so through this program.

Another major contributor to the success of the program is the community engagement aspect of informal settlement operations. Repeated meetings with community leaders, and notably members of the community themselves, throughout the duration of an electrification project, significantly contribute to investment and participation of the community in the project, nurturing trust in the services and engendering community spirit, cutting down on electricity theft and grid overloading. The opportunity is also used to get cooperation from the community to open up access ways in densely populated areas, not only to facilitate the installation of an electricity reticulation network but also to be maintained as access ways for health emergency services as well as the provision of other basic services such as water and sanitation where possible

The electrification of informal dwellings in the backyards of formal housing developments is a recent initiative. Two pilot projects have been successfully completed in what many regard as a first-of-its-kind program. The main challenge with these projects is the reinforcement of the existing reticulation network serving these properties. In most cases the additional load posed by backyard dwellings makes it necessary to replace the backbone infrastructure. At this stage the programme is restricted to backyard dwellings on properties owned by the City (rental housing) due to legal restrictions around enhancing private properties with public funds.

South African municipalities generate significant income from electricity distribution, and are responsible under their mandate to electrify urban areas, with rural areas under the jurisdiction of ESKOM, the national utility. Given the low rates of return for informal settlement electrification, for less affluent South African municipalities, replicating the Cape Town experience may prove challenging. While the electrification of informal settlements and backyard dwellings may not make financial sense if viewed with too narrow a perspective, the City emphasises wider benefits such as better living conditions, economic stimulation, health and safety, job creation and education opportunities. In view of the challenges faced with the delivery of free formal housing due to growing demand faced with urbanisation and historic spatial planning legacies amongst others in formal housing, informal housing has an important interim role to play and will not disappear overnight. It is with this knowledge that the City Of Cape Town decided more than a decade ago to provide electricity to those living in informal settlements.

In all, the Cape Town experience in informal electrification has useful implications for the SAMSET project. The management of informal electrification projects by the municipality has served to mitigate a number of risks inherent in informal settlement electrification, and this experience -under a number of conditions – could be cross-applied to great effect in other metropolitan areas in developing countries globally, particularly in the Sub-Saharan African context.

Energy and Sustainable Urban Development CPD Course – Day 3

This blog is part of a series on the Energy and Sustainable Urban Development in Africa workshop, 17 – 21 November, 2014, University of Cape Town. For more details on the purpose of the workshop, see this blog.

CPD blog day 3 image 1 part 2Charcoal briquette production and use. Image: GVEP International

Day three of the CPD course concentrated on the household energy poverty challenge in African cities, focusing again on Uganda, Ghana and South Africa for case studies. Energy is a cross-cutting issue in the household services sector, affecting areas such as health and life expectancy, food service and nutrition, water supply, and other basic life experience factors.

Currently 43% of South African households are living in energy poverty, defined by the government as having a greater than 10% expenditure of total monthly income on energy services. Informal households make up approximately 70% of the 3.6 million households in the country without electricity access currently. A number of factors lie behind this: from a policy perspective, the inclining block tariff and free basic electricity policies in the South African electricity sector only apply to electrified households, meaning households without electricity services, often the poorest, do not benefit from these initiatives.

A lack of access to appropriate, clean, safe, sustainable energy sources also forces households across the three countries to use expensive, unsafe but accessible fuel choices, such as paraffin or traditional wood fuels.

Following presentations on the current situation, City of Cape Town municipal energy & climate change department’s representative Andrew Janisch gave details on the City’s low-income energy services strategy. 265,000-360,000 households are currently part of the backlog for electrification by the city, and 500,000 households in the city live on less than R3,600 per month. In the face of this challenge, the city has embarked on a wide array of initiatives to improve urban energy services for the poorest, from Solar Water Heater dissemination on social housing projects to improving coordination and innovation in service delivery models and approaches. Key opportunities and lessons from the strategy include the necessity of coordination between municipal departments on energy, from tertiary education to housing to labour. “Radical” approaches and risk-taking, including the need for agility and flexibility institutionally, were also highlighted as useful approaches and factors. Finally, the critical nature of making the financial and business case for sustainable energy and energy efficiency was once again highlighted, as a route to improving acceptance and buy-in from municipal departments.

CPD blog day 3 image 2

South African informal settlement. Image: Melusile Ndlovu

Professor Trevor Gaunt from the University of Cape Town led the afternoon session on informal settlement electrification. Challenges to the common perception of the goal of electrification were a key theme of this presentation, and Prof. Gaunt proposed considering electrification on a socioeconomic and social basis, as well as the purely economic case for development. In addition, in challenging the common perception and approach, arguments were made for grid electrification in peri-urban areas, given the fact that dense populations can benefit most from grid economies of scale, rather than using off-grid solutions in these circumstances.

The latter half of the afternoon was dedicated to two field trips for the workshop participants, to the Blackriver Parkway office complex, and the iShack project in Enkanini, an informal section of Kayamandi, Stellenbosch,, a sustainability and off-grid electrification organisation.

cpd day 3 image 3

Part of the Blackriver Parkway office park’s 1.2MW photovoltaic installation. Image: Daniel Kerr

Blackriver Parkway is leading the way in embedded generation in South Africa commercial institutions, and currently has 1.2MW of installed photovoltaic capacity over three buildings. This mitigates the vast majority of the complex’s grid electricity demand, and great care has been taken to optimise the installations to closely match the demand curve of the complex. This has been achieved partly on the supply-side, through panel positioning to provide constant peak outputs over the course of the day, as well as on the demand-side, through the managing company investing in user education and buy-in for the complex’s client organisations. As legislation in South Africa is preventing organisations being net electricity contributors to the national grid, the complex generates the vast majority of its needs across the day from this solar installation. This project has become the first to legally transmit electricity back into the City of Cape Town’s electrical distribution network.

The iShack project in Enkanini is designed to provide the gamut of sustainability options to informal settlement dwellers, acting as a demonstration on how informal settlements can be more energy efficient. This covers insulation, biogas, wastewater treatment and water collection/saving, as well as off-grid electricity solutions through solar home systems. More details on the iShack project can be found in the following blog.