Tag Archives: Urban Energy

An experience of Dar es Salaam bus rapid transit system – DART

Simon Batchelor of Gamos writes on his experiences with the Dar Es Salaam rapid transit system (the DART).

When SAMSET started in 2014, its first network meeting was in Dar Es Salaam alongside an ICLEI conference.  At the conference there was an offering by the mayor of Dar for attendees to have a field trip to see the Dar es Salaam bus rapid transit system called DART.  At that time there was little more than road works to see, but what was impressive was the ambition to carve out whole highways that would be bus only roads.

1

Morocco BRT terminal in Dar Es Salaam. Image: Simon Batchelor

Like most city wide infrastructure projects, the system has been in the planning for more than a decade.  Discussed in 2003, JICA encouraged Dar municipality to consider the system, and designs started in about 2005.  Consultations with the public and those affected by the construction, social and environment impact studies, ongoing economic feasibility studies all take time, so it wasn’t until 2012 that the road works started to appear.  It will eventually be 6 phases, but phase 1 was completed in April 2015 (about 6 months after our first network meeting – so we didn’t get to ride it then).

When looking for some of the facts surrounding the system, I came across a document – “What necessitated establishment of a BRT system in Dar es Salaam?”.  Their answer…”When you have a swelling city population and you find yourself in the teeth of agonizing transport problems and hitches, the logical safety valve is to have a type of public transport that uses a passenger medium uninterrupted. As the name suggests BRT is a mode of public transport that uses rapid trunk buses. BRT is a huge-capacity transport solution to public transport problems the City of Dar es Salaam faces. The BRT system operates in a way quite similar to a tramway. In the latter passengers board trams while in the former passengers ride on huge buses plying on exclusive lanes.”  (My emphasis)

2

Interior of one of the DART buses. Image: Simon Batchelor

So when we were in Dar for other business last week, we took the opportunity to ride the buses. Phase 1 is said to be a single 23 km line from a station called Kimara Terminal down to the CBD.  However we found ourselves at the end of a branch line, at Morroco Terminal.  The system is said to have cost around $180 million so far.  Since there are branches one has to choose the right bus. We got on at Morroco, and were advised to take the No 3 bus in order to get to the Zanizbar ferry terminal.

3

Proposed full route of the DART. Image: http://ansoncfit.com/wp-content/uploads/DART-Phase-1-e13033701609191.png 

4

Citizens riding the DART bus. Image: Simon Batchelor

It runs some 140 Chinese made buses that in themselves are unusual.  Each station or terminal sits raised at about stomach height.  The buses have floors and doors at that height on the right hand side.  On the other side for emergencies they have one door that has steps down to road level – mainly for the driver since no one ever gets on that left hand side.

5

Bus terminal in Dar Es Salaam. Image: Simon Batchelor

The terminals have gates and one purchases either a seasonal ticket and gets a Contactless smart card or at the counter and gets a printed ticket with a bar graphic.  Placing the ticket under the gate scanner gets you through the gate or like many other rapid transport systems in cities one taps the card and the price of the journey is taken from it.  At the moment there are staff to help people get through the gates as the whole system is still being nurtured among the general population.

6

Passengers using a ticket turnstile. Image: Simon Batchelor

We entered the bus at one end of the line (Morroco), and found a clean air conditioned No 3 bus that would not have felt out of place in any modern bustling city.  By mid journey the bus was full and the heat radiated by so many bodies had overwhelmed the air conditioning and people had opened the windows.  This was not rush hour but was middle of the day, so I can imagine it gets pretty cramped at peak times.  However while it declined in comfort by the end of the journey, it was indeed quick.   We had sat in a taxi the day before for an hour in a very slow moving traffic jam; this trip took us only 20 minutes.  It felt impressive to look ahead of the bus and see the completely open highway.

7

Passengers on the DART. Image: Simon Batchelor

We have talked a lot in this blog about the growing needs of municipalities, and SAMSET is focused on long term solutions.  Dar es Salaam is a fast growing commercial capital, producing 70 percent of Tanzania’s gross domestic product and is the hub of economic activity with an estimated daytime population of close to six million.  Analysis in 2014 showed that some private 5,200 passenger buses were operating on the city roads, and traffic congestion was already having an impact on the economic well-being of the city.  A metro was not possible, and the rapid bus system seemed viable.  It is said it will transport 300,000 a day in this interim phase.

Having now ridden the system, I can see how it can avoid the traffic problems.  I think it probably already gets overwhelmed in rush hour and be uncomfortable to ride at those times (much like most mass transit systems in most capital cities!  I try to avoid the London underground at peak times!).  I wish the municipality of Dar the best for its subsequent phases and will be interested to see its longer term use of lower carbon buses.

Advertisements

Urban and Rural Energy Access: “Leapfrogging”?

Mark Borchers from SEA writes on the recent context of SAMSET work in the wider space of urban and rural energy access in the developing world.

Christoph Frei, Secretary General of the World Energy Council[1] recently noted that “only three years ago, when suggesting to energy professionals that there could be ‘leap frogging’ in energy similar to what has happened in the mobile phone industry, the response would have suggested little understanding of energy realities. We now see tens of thousands of direct household solutions being delivered to rural Africa without a formal supply chain and in the absence of any energy infrastructure backbone. What does leapfrogging mean, if not this?”

…and…

“In many rural contexts in Africa, renewables are providing an engine for local development and poverty reduction.  Of the two-thirds of people in Africa without access to power, 80% live outside urban centres. A mix of off-grid renewable power instalments could be the key to electrifying rural Africa with consumers buying power locally and paying via their mobile phone.”

The potential of energy delivery modes “without a formal supply chain and in the absence of any energy infrastructure backbone” that Frei speaks of is indeed exciting. This largely bypasses the cumbersome processes of central institutions with their inefficiencies and mixed agendas.

He also notes: “For the energy sector, unprecedented speed of change and new realities pose a wide range of challenges and new opportunities for companies and governments who are on a high-stakes journey to adapt their business models and policy frameworks.”

wp_20161107_028

Energy leapfrogging does not only apply to rural areas, direct benefits to the local economy can be seen in large cities such as Kampala, above. Image: Daniel Kerr

Frei importantly reinforces the perception that the energy sector is changing rapidly, and that the old way of doing things – where centralized planning and large utilities are the key players – needs revisiting, as it is unlikely to be the way of the future.  Yet most national governments and utilities in Sub-Saharan Africa seem to be moving into the future as if this is not the case, with the potential for stranded assets and business failure. Surely new approaches and business models need to be explored more urgently.

Secondly, Frei emphasizes rural energy access in Africa. This rural focus is clearly important, and it suits national governments whose political support is generally rural-based (opposition movements tend to grow from urban areas).  But this traditional focus on rural access can unduly overshadow the importance of urban energy access. Looking at access to electricity, although most unelectrified households are currently rural (around 550 million people are unelectrified), urban electrification rates are not high – often well below 50% – and currently around 150 million urban dwellers have no access to electricity[2]. Between 2035 and 2040 Africa’s population is expected to become predominately urban[3].  Modelling undertaken by Sustainable Energy Africa as part of the SAMSET project[4] indicates that the future energy demand of Sub-Saharan Africa is likely to be substantially urban, with the urban share of total demand rising to over 75% by 2040 (see Figure).  We should not overlook that there are huge opportunities to boost access to modern energy in urban areas. It is in urban areas that populations are closer to infrastructure, more dense, with higher average incomes and where delivery systems can be more cost-effective.  It is in urban areas also where the very poor can be the most destitute, with reduced access even to traditional biomass energy.   It seems justifiable to encourage a parallel focus on rural and urban access in a sector where ‘access’ currently seems almost entirely synonymous with ‘rural access’.

urban-ssa-energy-demand-over-time

Figure: Urban sub-Saharan energy demand over time showing Business-as-Usual, Universal Access and Energy Efficiency scenarios. Total sub-Saharan Africa energy demand (urban and rural) is also shown (Source: Modelling the Urban Energy Future of Sub-Saharan Africa, Sustainable Energy Africa, 2015).

One more point worth considering regarding the urban-rural population dynamic: At a recent course SAMSET was running for municipal officials and urban energy practitioners, a lecturer asked “how many of you are first generation urban, or still consider your ‘home’ to be in a rural area?”.  The majority raised their hand. There may be various implications of this characteristic: urban-rural remittances are likely to remain common into the medium-term, which could facilitate rural energy access with small decentralized technologies such as PV being funded from urban earners for their rural homes and families.  On the other hand remittances may reduce investment in urban areas, which may impact to some extent on urban economies and possibly also the willingness to invest in urban energy infrastructure.  Let’s keep an eye on how this dynamic plays itself out over the coming years.

[1] World Energy Council Secretary General reflects on key highlights of 2016. Africa Energy Indaba Press Release, 12 January 2017

[2] Calculation from IEA’s African Energy Outlook 2014 electrification database.

[3] African Urban Futures 2016, Bello-Schünemann and Aucoin; State of African Cities 2014, UN Habitat

[4] Modelling the Urban Energy Future of Sub-Saharan Africa, Sustainable Energy Africa, 2015. www.africancityenergy.org

SDG 7 and SE4All: The role of Sub-Saharan Local Governments in Supporting Sustainable Energy Goals

This blog explores the role of Sub-Saharan African local governments can play in supporting the SDG energy-related goals and SE4All goals.  It suggests that they play a key role in this area given that they are often at the forefront of service delivery and end-user interaction. Yet overall the capacity and resource needs of local governments on the sub-continent remain under-prioritised by national governments, international development aid agendas, and the global research community.

The goals of SDG7 and SE4All are closely aligned, but there are also other SDG goals that are relevant to sustainable urban energy.  The SDG7 targets are:

  • By 2030, ensure universal access to affordable, reliable and modern energy services
  • By 2030, increase substantially the share of renewable energy in the global energy mix
  • By 2030, double the global rate of improvement in energy efficiency
  • By 2030, enhance international cooperation to facilitate access to clean energy research and technology
  • By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all

In addition, relevant goals from SDG11 (sustainable cities) include access to safe, affordable, accessible and sustainable transport systems, enhancing the capacity for integrated and sustainable human settlement planning, and addressing the impact of poor air quality and municipal waste. All of these are closely linked to sustainable energy futures.

Many Sub-Saharan African countries have, or intend to develop, plans whereby the SDG7 and SE4All goals can be pursued.  For example both Ghana and Uganda have such plans (Ghana SE4All Action Plan 2012, Uganda SE4All Action Agenda 2015), although it is notable that such key energy planning documents do not mention the transport sector – a major and fast growing energy consumer and emissions contributor. South Africa does not appear to have specific SE4All planning documents, although many initiatives exist in the country which are in pursuit of these objectives.

Numerous important sustainable energy initiatives are substantially linked to, or dependent on, national processes and mandates, or are best handled at a centralized national level (e.g. national power grid capacity upgrading, or changing regulatory frameworks around local generation).  Nevertheless, much lies within the mandate or direct influence of local governments, and globally there is an increasing emphasis on local players taking a stronger role in sustainable energy issues, as has been reflected at the recent COP gatherings in Paris and Marakesh.  In this regard, the work of the SAMSET project (Supporting sub-Saharan African Municipalities with Sustainable Energy Transitions) indicates that local governments on the sub-continent, and local research organisations, can play an important role in the following areas.

Local facilitation of household energy programmes which are driven by national or other players, such as cookstove, efficient appliance and electrification programmes: this includes collecting and providing information and data on needs and opportunities in local area; participating in implementation planning, community awareness raising and communication, and monitoring once implemented (all of these are best done at a local level); conducting research on impact and methodology improvements (Has it improved welfare? How could it have been better implemented? Costs vs benefits? Subsidy needs and justification? etc), and conducting research on impact on local small businesses (e.g. charcoal producers and retailers, appliance shops, cookstove manufacturers etc).

Promotion or facilitation of renewable energy programmes which need to be at least partially locally based (which may be driven locally or by national or other players), such as biogas, rooftop grid-connected solar PV, and solar water heating initiatives: this includes identification of local biogas opportunities (e.g. abattoir) and facilitating feasibility studies; engaging with power utility around local grid-connected solar PV pilot projects; engaging with local businesses (e.g. solar water heater, solar PV suppliers) regarding how to facilitate rollout and improve affordability; awareness raising and community engagement, and monitoring of implementation; research on impact and methodology improvements to maximize benefits; promotion and advocacy around fast-emerging options such as rooftop grid-connected solar PV; direct procurement of solar PV streetlights, and undertaking landfill gas feasibility studies and subsequent implementation pursuit.

Building energy efficiency promotion (local government often has direct mandates here): this includes developing local bylaws for commercial building energy efficiency; awareness raising around residential building energy efficiency (appropriate window use, shading etc), and organising training of building sector to improve ability for energy efficient construction.

Industrial energy efficiency promotion: including encouraging/incentivising audits (e.g. link with donor EE programmes), and facilitating training and awareness programmes locally.

Bringing sustainable energy concerns into spatial planning and transport planning: this includes introducing densification, corridor development, mixed use and other approaches into spatial plans; bringing tribal authorities (land owners) and municipal officials together in developing a shared vision around spatial futures, and researching and modeling the impact of different spatial and transport interventions on future energy, cost, social welfare, and economic activity – and engage with regional and national transport planning processes to introduce more optimal approaches.

Developing a more conducive enabling environment for implementation: this includes linking with support/donor programmes around supporting sustainable energy, and identifying how collaboration could work; researching and providing local data on energy status, problems, and opportunities; researching and communicating updates on implementation status as programmes are implemented, and evaluate their impact; capacity building of local government staff; programmatic partnerships between local government and local research institutions; developing networks amongst local governments for lessons exchange and mutual support, and developing links between local, regional and national players to facilitate integrated planning and coordinated approaches

Helping clarify the role of local government in sustainable energy, and identify effective methodologies to support them in fulfilling this potential: this includes researching the process of local government involvement and role in sustainable energy, and assess their challenges in this regard, researching approaches to supporting local government to engage effectively with sustainable energy promotion, and disseminate experience in this regard and potential for local government in promoting sustainable energy at workshops, conferences, meetings etc.

The role of local governments and local research organisations in moving to a more sustainable energy future as envisioned by the SDGs is clearly substantial. This has implications for development aid resource allocation and research funding channels.  Importantly, it is not enough to just fund research – a dual approach of partnerships with researchers who align directly with the needs of local governments, as well as a strong focus on real capacity building of local governments is important (note that information dissemination is not capacity building).  Programmes such as SAMSET are working in this area, but the needs are currently far greater than the enabling resources, by an order of magnitude at least.

Continuing Professional Development Course – Kampala, Uganda, 7-11 November 2016

The consortium of the Supporting African Municipalities in Sustainable Energy Transitions (SAMSET) researchers is organising a CPD from 7 – 11 November, 2016 in Kampala (Uganda) during which it will share with key stakeholders findings thus far, strategies and case studies from the research and key allies in the field. Concepts from these sessions are geared towards supporting initiatives for energy transitions in various arena in the urban environment.

At the core of the SAMSET project is promoting responsible use of and access to clean energy. The role of national policy and regulatory frameworks and how these have since evolved to link government and governance on the one hand and academia, finance, investment and community on the other, in developing instruments that promote and facilitate energy transitions is interrogated in this project. The project is cognisant of the fact that social or socio-economic engagement in as far as they influence attitudes toward sustainable energy transitions are key drivers. As such, even at local/micro scale SAMSET is very keen to empower local communities to thrive on their own. As a strategy to deliver key action oriented messages, case studies that demonstrate the presence and impact of projects on communities at urban scale will be explored.

On the first day, 7 November, 2016, participants will be taken on a field trip to acquaint themselves with the scope of urban energy. This will be followed by four days of in-depth presentations to familiarise participants with the subject matter and group tasks to enable participants apply themselves in order to appreciate the concepts better. The key themes will include: Resource-efficiency in Energy Planning, Implementation and Management; Participation and Key Stakeholders in Energy Planning, Implementation and Management; Policy and Regulatory Frameworks and; BUILD[ing] Resilience.

While the CPD is open to all Built Environment practitioners ranging from government departments, development partners, architects, engineers, planners, building control officers, energy managers, contractors, housing associations, developers, clients, students, academics and researchers, it will also involve key actors like the the Parliamentary Committee handling Climate Change/Energy Policy and/or Building Regulations; Kampala Capital City Authority; Ministry of Local Government; Ministry of Energy and Mineral Development; Ministry of Lands, Housing and Urban Development, Uganda National Bureau of Standards; Uganda Revenue Authority, Uganda Local Government Association and; representatives from the project’s Pilot Municipalities in Uganda – Jinja and Kasese.

Please visit www.samsetproject.net for more details about the project, or click here for the course flyer.

Daniel Kerr, UCL Energy Institute

Sub Saharan African local government and SDG 7 – is there a link?

Megan Euston-Brown from SEA writes on the importance of considering local government spheres in sustainable energy development in light of the recent UN Sustainable Development Goals 7.

Building an urban energy picture for Sub Saharan Africa (SSA) is a relatively new endeavour, but policy makers would do well to take heed of the work underway [1]. The emerging picture indicates that current levels of energy consumption in the urban areas of SSA is proportionally higher than population and GDP [2]. These areas represent dense nodes of energy consumption. Africa’s population is expected to nearly double from 2010 to 2040 with over 50% of population urbanized by 2040 (AfDB 2011). Thus by 2040 it is likely that well over 50% of the energy consumed in the region will be consumed within urban areas. Strategies to address energy challenges – notably those contained within SDG 7 relating to the efficient deployment of clean energy and energy access for all – must therefore be rooted in an understanding of the end uses of energy in these localities for effective delivery.

SDGs

Analyses of the end uses of energy consumption in urban SSA generally indicate the overwhelming predominance of the transport sector. Residential and commercial sectors follow as prominent demands. Cooking, water heating, lighting and space cooling are high end use applications. Industrial sector energy consumption is of course critical to the economy, but is generally a relatively small part of the urban energy picture (either through low levels of industrialisation or energy intensive heavy industries lying outside municipal boundaries).

Spatial form and transport infrastructure are strong drivers of urban transport energy demand. Meeting the ‘low carbon’ challenge in SSA will depend on zoning and settlement patterns (functional densities), along with transport infrastructure, that enables, continues to prioritise and greatly improve, public modalities. These approaches will also build greater social inclusion and mobility.

The high share of space heating, ventilation and lighting end uses of total urban energy demand points to the significant role of the built environment in urban end use energy consumption.

These drivers of energy demand are areas that intersect strongly with local government functions and would not be addressed through a traditional supply side energy policy [3]. Understanding the local mandate in this regard will be important in meeting national and global sustainable energy targets.

dennismokoalaghana

Urban highway in Ghana. Image: Dennis Mokoala)

The goal of access to modern, safe energy sources is predominantly a national supply-side concern. However, with the growth of decentralised systems (and indeed household or business unit scale systems being increasingly viable) local government may have a growing role in this area. In addition an energy services approach that supplements energy supply with services such as solar water heating, or efficiency technologies (e.g. LED lighting), may draw in local government as the traditionally mandated service delivery locus of government.

An analysis of the mandate of local government with regard to sustainable energy development across Ghana, South Africa and Uganda indicates:

  1. National constitutional objectives provide a strong mandate for sustainable development, environmental protection and energy access and local government would need to interpret their functions through this constitutional ‘lens’;
  2. Knowing the impact of a fossil fuel business-as-usual trajectory on local and global environments, local government would be constitutionally obliged to undertake their activities in a manner that supports a move towards a lower carbon energy future;
  3. Infrastructure and service delivery would need to support the national commitments to energy access for all;
  4. Decentralisation of powers and functions to local government is a principle across the three countries reviewed, but the degree of devolution of powers differs and will affect the ability of local government to proactively engage in new approaches;
  5. Existing functional areas where local government may have a strong influence in supporting national and global SDG 7 (sustainable energy) targets include: municipal facilities and operations, basic services (water, sanitation, and in some instances energy/electricity) and service infrastructure, land use planning (zoning and development planning approval processes), urban roads and public transport services and building control.
  6. Where local government has a strong service delivery function it is well placed to be a site of delivery for household energy services and to play a role in facilitating embedded generation. New technologies may mean that smaller, decentralised electricity systems offer greater resilience and cost effectiveness over large systems in the face of rapid demand growth. These emerging areas will require policy development and support.

In practice the ability of local government to respond to these mandates is constrained by the slow or partial implementation of administrative and fiscal decentralisation in the region. Political support of longer-term sustainable urban development pathways is vital. Experience in South Africa suggests that the process is dynamic and iterative: as experience, knowledge and capacity develops locally in relation to sustainable energy functions, so the national policy arena begins to engage with this. Thus, while international programmes and national policy would do well to engage local government towards meeting SDG 7, local government also needs to proactively build its own capacity to step into the space.

[1] In South Africa this work has been underway since 2003; SAMSET is pioneering such work in Ghana and in Uganda and the World Bank’s ESMAP has explored this area in Ghana, Ethiopia and Kenya. SAMSET is also undertaking a continent-wide urban energy futures model.

[2] Working Paper: An exploration of the sustainable energy mandate at the local government level in Sub-Saharan Africa, with a focus on Ghana, South Africa and Uganda. Euston-Brown, Bawakyillenuo, Ndibwambi and Agbelie (2015).

[3] Noting that not all drivers of energy demand intersect with local government functions, for example, increasing income will drive a shift to energy intensive private transport; and that population and economic growth will always be the overarching drivers of demand.

Smaller African cities need sustainable energy intervention

Originally posted on The Conversation, Louise Tait from the University of Cape Town Energy Research Centre writes on sustainable urban planning and energy, and the SAMSET Project’s role in supporting sustainable energy development in developing world cities.

Africa is experiencing a massive flow of people into urban areas. This is happening in major urban centres such as Lagos, Accra and Dar es Salaam as well as in smaller and secondary cities. The pace at which this urban growth is happening inevitably puts strain on city authorities. The supply of services and developing infrastructure is vital for human and economic development.

But the evidence base to support forward planning remains scarce for most cities. In its absence, cities run the risk of infrastructural lock-ins to systems that are unable to accommodate their growth sustainably.

Cities with high concentrations of people and economic activities are major sites of energy demand. Africa contributes very little to global climate change today. But future growth must be managed sustainably. If the emissions of developing country cities increase similar to many western cities today, catastrophic climate change will be unavoidable.

The SAMSET project

Supporting African Municipalities in Sustainable Energy Transitions, or SAMSET, is a four-year project that commenced in 2013. Its aim was to address sustainable energy transitions in African cities. It provides practical planning and implementation support to municipalities to manage future energy planning in a sustainable manner.

The project involves six cities in Ghana, Uganda and South Africa. The cities were Ga East and Awutu Senya East in Ghana, Kasese and Jinja in Uganda and Cape Town and Polokwane in South Africa. Research and support organisations in each country and the UK were involved as well.

Secondary and smaller cities are the main focus for support. These cities are also experiencing massive social and economic expansions. But they typically have less capacity to cope. Despite their significance as current and future sites of energy demand, they receive much less research and funding focus.

Secondary cities such as Uganda’s Kasese traditionally lack the research or funding to make sustainable energy transitions.

Developing an evidence base to support planning

The first phase of the project involved developing an evidence base to support planning and future implementation of sustainable energy interventions. Locally relevant planning tools are essential. There are very few studies investigating and modelling the energy systems of African cities. South Africa is a notable exception.

An urban energy system refers to all the flows of different energy resources, such as petrol, diesel, electricity, wood and charcoal in a city. It records where resources are produced or imported into an area and where they are consumed in different sectors. Such information can help cities better understand which sectors are major consumers and identify inefficiencies. It also helps identify where opportunities for energy efficiency and new technologies may lie, especially those associated with improved economic and welfare effects.

Much of how we understand urban energy systems is based on cities in western and developed countries. But many cities in Africa challenge assumptions about economic development trajectories and spatial arrangements that may be implicit in energy modelling approaches which are based on developed country experiences.

SAMSET modelled the urban energy systems of each of these cities using the Long-range Energy Alternatives Planning model. It was developed by the Stockholm Environment Institute. This model records all energy consumption and production in each sector of an economy. For example the household, commercial, industrial and transport sectors are all recorded. It is a useful planning tool because it projects the growth of energy systems until 2030 under different scenarios. This helps cities understand the future impacts of different investment and planning decisions now.

For SAMSET, universities in each country undertook primary data collection on sectoral energy demand and supply. A baseline model and range of scenarios were then collaboratively developed with local research partners and municipalities.

The project aimed to develop an evidence base to serve as a tool for local decision-makers. Also for further collaborative energy strategy development and to prioritise the implementing of options for the next phases. The scenarios have therefore attempted the following:

  • Through stakeholder engagement, to take into account governance systems.
  • Existing infrastructural constraints and opportunities.
  • Aligning with other development imperatives.

Value of the process

The project has served to introduce to city and local planners the use of energy models. It also attempted to set up the foundation for future development of energy modelling exercises and its applications. Collaborating to collect data, discuss key energy issues, and identify interventions are highly valuable to local stakeholders.

The process was instrumental in generating an understanding of energy planning. For some of municipalities, this was the first time consideration has been given to energy as a municipal function.

The modelling process acts as a strategic entry point to build interest and support for the project with municipal stakeholders. It also provides a useful platform and tool to engage around long-term planning and the implications of different actions. An example is infrastructural lock-in to emissions and energy intensive growth paths.

Value of the outputs

SAMSET is making an important knowledge contribution to the dynamics of sustainable energy transitions in African cities. Such research is of course made difficult by the data scarcity typical at a sub-national level. But this is merely reflective of the lack of financial investment to date.

The local data collection processes in this project have been vital in building capacity and generating awareness around urban energy systems. Developing new data and building knowledge of urban energy transitions in the global south is critically important. It has had a strong focus on establishing a network of both north-south and south-south practitioners to support more work in this arena.

The modelling has had to account for several distinct characteristics. These include:

  • The informal economy
  • Own energy generation through diesel and gasoline generators
  • The high reliance on biomass
  • Variations in urban forms and issues such as suppressed demand for energy services.

This project has also made important methodological contributions to modelling urban energy systems in developing countries.

A plan of action, talk of action, chain reaction, yet?

Alex Ndibwami from Uganda Martyrs University write on the recent African Union of Architects Congress in Kampala, Uganda, and its relevance to the work and goals of SAMSET.

Last month, I had the opportunity to attend the African Union of Architects Congress in Kampala.  This was the first time Uganda was hosting the event whose theme was Our Architect, Our Communities, Our Heritage. 

While there were a number of presentations and discussions, I will focus on three of particular interest specifically because they are at the heart of the issues SAMSET has set out to deal with.

Ms Jennifer Musisi, the Executive Director of Kampala Capital City Authority, delivered a keynote presentation on urbanisation in general and what direction is being taken to improve the conditions in her city; while Mr Medie Muhammad Lutwama, Executive Director, ACTogether Uganda, presented the approach to their work in informal settlements, challenging the built environment professional rethink their attitude towards urbanisation and the challenges it comes with; and from a gripping and  inspiring philosophical point of view Ms Lillian Namuganyi of Makerere University, College of Engineering Design, Art and Technology discussed socio-spatial landscapes in a historical and ideological sense, and what form it could take to renew a contextually rich socio-cultural dynamic in a contemporary sense.  Ms Lillian Namuganyi is also a practising architect and a researcher.  What these three presentations had in common was that they are concerned about the future of the city dweller.

What I will dwell on though are the subtle hints for a collaboration that these three players in the built environment are signalling.  While Ms Jennifer Musisi may have concluded inviting professionals to get on board and Mr Medie Muhammad Lutwama reechoed the need for professionals to be less elitist, Ms Lillian Namuganyi simply set the arena for a renewed attitude toward the socio-spatial landscape.

But what does it all mean in practical terms?  We all know that governments focus on infrastructure the best way it fits their political agenda while Non Governmental Organisations (NGOs) actually tend to be more hands-on attempting to solve the real problems at the grassroots, yet unless efforts are combined any discourse will remain academic and the existence of the built environment professional float for elitist.

Is there room for a real collaboration that deals with the issues collectively and could deliver lasting solutions?  Who is well placed to lead this and sustain the momentum – a city manager, an NGO activist, an academic/researcher or a built environment professional?  It is difficult to tell in a society where accountability born of collective effort is not part of the work ethic.

Might Ms Lillian Namuganyi suggest a starting point for us in her assertion that “Whether operating within or at its margins, the re-working of the strategic city is a logic and order of fragments, scraps that are pieced together moment by moment.  It is a city of micro-logics of the people’s social and especially economic survival – many small thoughts and actions of many people, woven into the detailed space of the city, unpredictable, never static, ever mutating.” So I dare ask again without deliberate collaboration that acknowledges the complexity of the city and the contribution from different players is the plan of action simply talk of it?  Or is there potential for real change – a chain reaction of possibilities borne of new partnerships that combine astute managerial skills, compassionate activists, avant-garde professionals and more outgoing academics.

The SAMSET project is an action oriented research project setting out to close the capacity gap at municipality level while in a participatory manner developing strategies that will support energy transitions.  Indeed, capacity and engagement are a precursor to action, but without the acknowledgement of and investment in structures that promote inter disciplinary work ethos, is it sustainable?