Tag Archives: Energy Efficiency

SAMSET Releases a New Guide to Clean Energy Transitions for Sub Saharan Municipalities

Simon Batchelor from Gamos writes on the recently-released Guidelines to Clean Energy document for SAMSET.

As a part of our ongoing work with Sub Saharan Municipalities in Uganda and Ghana, the research team have brought together some basic information on clean energy transitions.  “GUIDELINES TO CLEAN ENERGY:- A PRACTICAL GUIDE FOR SUB SAHARAN AFRICAN MUNICIPALITIES (2017)”. The Guide is intended to help decision makers in Municipalities in Sub Saharan Africa to consider ways in which they could make their city utilize cleaner energy. Its foreword states “This manual has been designed for use by city officials and planners working in sub-Saharan Africa. It is a practical handbook, which identifies easy to achieve energy interventions that will save money (for cities, businesses and households), promote local economic development, and enhance the sustainable profile of a city. This manual is specifically aimed as a support tool to achieve the implementation of key interventions within municipalities across sub-Saharan Africa.”

The 200 page document starts with a call for cleaner energy. Its opening chapter draws on various sources to show how our ongoing use of fossil fuels is linked to climate change. The historical contribution of Sub Saharan Africa to global climate change is small compared to the developed countries, however over the next 30 years it will increase its contribution particularly if ‘Business as Usual’ is continued. The opening chapters discuss how this global problem is the responsibility of all, and how municipalities could take a decision to move towards clean energy that might contribute to climate change mitigation in the long term.

The guide, however, is titled ‘A Practical Guide’ and we felt it important to move quickly on from the macro picture of global challenges to the specifics of what a municipality might do. Each of the chapters has the same format –

  • An overview, which includes some basic description of technology and social change options;
  • The Case; which discusses how simple changes can make considerable differences
  • Potential for Rollout; discussing the realities of Sub Saharan African life and whether the technology could be introduced
  • Barriers to implementation (and effort to resolve); an attempt to anticipate barriers, and suggestions of what might be done
  • How to go about implementation; some suggestions for action
  • Case Studies; some Sub Saharan African case studies to illustrate the relevance and possibilities of the chapters subject.

Chapter 5 starts with Energy efficient lighting a technology that is relatively easy to implement. LED bulbs have become common and simple action ensuring they are available in the market and ‘encouraged’ among consumers can save significant amount of electricity (compared to older lamps). Chapter 6 broadens the picture to include energy efficient buildings.Ideally these need some design at the very start, but the chapter also makes suggestion for retrofitting that can lower energy consumption. Chapter 7 considers public transport. Vehicles can not only consume considerable amounts of fossil fuel, but create localized pollution. The chapter focuses on the possibilities of public transport as an alternative to everyone getting their own car. Chapter 8 considers cooking. While it may seem that municipalities have little to say about the choice of domestic cooking fuels, the ongoing use of biomass (charcoal) in urban areas contributes to local pollution, kitchen pollution and global pollution. Municipalities can undertake various strategies to assist consumers to move toward genuinely clean cooking.

Waste to energy in Chapter 9 is very much a municipality concern. Collection of waste is a challenge to many SSA municipalities, and the possibility of converting it to useful energy is worth consideration. Chapter 10 talks about Solar Photovoltaics. Solar PV has come down in price considerably over the last few years and this chapter discusses the possibilities – from solar farms contributing to the national grid, to mini and micro grids, to solar home systems.

Renewable purchase agreements are a policy tool that can encourage clean energy. Chapter 11 discusses these, pointing the municipality players to consider the policy instruments available in their country. Chapter 11 touches on carbon trading – this again is effectively a policy instrument that municipalities might consider using. And finally , a last chapter summaries but does not deal in depth, some ideas on Concentrated Solar Power, Wind Power and Solar Water Heaters.

The guide ends with a call to action, to share ideas with colleagues, and to take small steps that help us tread lightly on the earth. “We may have discussed many ideas, technologies, approaches, regulations, policies, feed in tariffs, low energy light bulbs, and energy efficient buildings among others, but ultimately consumption and sustainability come down to you. Humanity has a large footprint on this world and currently we are not treading lightly. We consume; we consume fossil fuel, we create so much impact that our climate is changing, we build cities that can be seen from space; we are heavy on the earth.”

Public Buildings as Beacons of Energy Efficiency: A Key Strategy for Local Governments to Champion Energy Efficiency

Herbert Candia and Alex Ndibwami of Uganda Martyrs University report on a site visit they went to Nairobi with project partners from Kasese municipality.

The goal of the visit was, by visiting two recently completed and published energy efficient buildings, to convince the Mayor, Town Clerk and Site Engineer that it is possible to deliver an energy efficient building today. The buildings included Strathmore Business School at Strathmore University and the UNEP/UNHabitat office facility at the UN Headquarters in Nairobi.

Nairobi’s high solar yield all year round makes solar power the best renewable energy source. Collation: UNEP/UNHABITAT Archive

When speaking about energy efficiency in sub-saharan Africa you would expect that the years that followed for example the construction of the Eastgate building in Harare, Zimbabwe by Mick Pearce would have registered a considerable number of examples local to the region. More often than not as a result, the references we make are a mix of more western attempts the price for which we pay in misplaced parallels.

In Uganda, reference to local attempts is only safely to buildings that were designed and built during the colonial era especially those that have not been ill advisably retrofitted with air conditioning. However, we can proudly acknowledge the fact that one building – the Jinja municipality headquarters stands soundly in its balanced rectilinear form and elegantly in its well-orchestrated fenestration as both light and air grace it efficiently. Of course there are some opportunities yet to be taken advantage of, for example: water harvesting, local waste management and making the most of the outdoors for its environmental and social-cultural potential.

The simple design enables the building to act as a chimney, where warm air is drawn up from ground level and through the office areas, and then escapes beneath the sides of the vaulted roof, maintaining comfortable temperatures in the offices and air circulation throughout the building. Source: UNEP/UNHABITAT Archive

Here we are with two project partners, Jinja and Kasese municipalities: Jinja, that has a 56 year old energy efficient building and Kasese, that is only building theirs today. The task ahead for us is to transform Kasese’s two storey predictably energy inefficient building into an energy efficient one. The bigger challenge presented though is that this building is under construction.  There is no evidence in the drawings that energy efficiency was considered, rather a form that was dictated by key functions the building will accommodate.

Strathmore Business School in Nairobi: The simple design is housed in an elegantly transparent and pragmatically perforated volume with generous overhangs to prevent heat gain while creating semi outdoor spaces that add life to the building. Source: Mwaura Njogu

Unfortunately, it is abundantly clear that there are hardly any recently completed multi storey buildings that demonstrate any energy efficiency let alone any consistent attempt to document where efforts have been made. Indeed, we need more “local” examples of energy efficient buildings whose attempts resonate with our context in order to nurture an attitude of design and construction for energy efficiency. Public buildings can play a leading role and it ought to be a key strategy for municipalities to champion. This can start in exhibiting their headquarters as a local example and later in how the planning approval process is undertaken. This would be a key step in transitioning to a more energy efficient built environment.

Jinja Municipal Headquarters: The simple design of the Jinja municipality headquarters stands soundly in its balanced rectilinear form and elegantly in its well-orchestrated fenestration as both light and air grace it efficiently. Image: A.Ndibwami

Coincidentally, a process is underway in which a building code that will feature energy efficiency is being drafted for Uganda. In order to avoid the historical weaknesses in policy and regulatory frameworks where application and enforcement are weak it is crucial that key players are prepared to implement energy efficiency. Project partners from Kasese have shown eagerness and conveyed a sense of appreciation to have their new building reconfigured for energy efficiency. The visit to Nairobi thus, is one way of exposing key decision makers to the possibilities. We also hope that the design process and the decisions that will contribute to reconfiguring the building for the better will serve as a capacity building exercise. To boost the design process and promote ownership, we will hold a workshop based visit to Kasese to reveal the possibilities while accomodating any feedback leading up to implementation. Inadvertently perhaps, other local governments following our documentation of the process and outcomes will emulate it all.

SDG 7 and SE4All: The role of Sub-Saharan Local Governments in Supporting Sustainable Energy Goals

This blog explores the role of Sub-Saharan African local governments can play in supporting the SDG energy-related goals and SE4All goals.  It suggests that they play a key role in this area given that they are often at the forefront of service delivery and end-user interaction. Yet overall the capacity and resource needs of local governments on the sub-continent remain under-prioritised by national governments, international development aid agendas, and the global research community.

The goals of SDG7 and SE4All are closely aligned, but there are also other SDG goals that are relevant to sustainable urban energy.  The SDG7 targets are:

  • By 2030, ensure universal access to affordable, reliable and modern energy services
  • By 2030, increase substantially the share of renewable energy in the global energy mix
  • By 2030, double the global rate of improvement in energy efficiency
  • By 2030, enhance international cooperation to facilitate access to clean energy research and technology
  • By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all

In addition, relevant goals from SDG11 (sustainable cities) include access to safe, affordable, accessible and sustainable transport systems, enhancing the capacity for integrated and sustainable human settlement planning, and addressing the impact of poor air quality and municipal waste. All of these are closely linked to sustainable energy futures.

Many Sub-Saharan African countries have, or intend to develop, plans whereby the SDG7 and SE4All goals can be pursued.  For example both Ghana and Uganda have such plans (Ghana SE4All Action Plan 2012, Uganda SE4All Action Agenda 2015), although it is notable that such key energy planning documents do not mention the transport sector – a major and fast growing energy consumer and emissions contributor. South Africa does not appear to have specific SE4All planning documents, although many initiatives exist in the country which are in pursuit of these objectives.

Numerous important sustainable energy initiatives are substantially linked to, or dependent on, national processes and mandates, or are best handled at a centralized national level (e.g. national power grid capacity upgrading, or changing regulatory frameworks around local generation).  Nevertheless, much lies within the mandate or direct influence of local governments, and globally there is an increasing emphasis on local players taking a stronger role in sustainable energy issues, as has been reflected at the recent COP gatherings in Paris and Marakesh.  In this regard, the work of the SAMSET project (Supporting sub-Saharan African Municipalities with Sustainable Energy Transitions) indicates that local governments on the sub-continent, and local research organisations, can play an important role in the following areas.

Local facilitation of household energy programmes which are driven by national or other players, such as cookstove, efficient appliance and electrification programmes: this includes collecting and providing information and data on needs and opportunities in local area; participating in implementation planning, community awareness raising and communication, and monitoring once implemented (all of these are best done at a local level); conducting research on impact and methodology improvements (Has it improved welfare? How could it have been better implemented? Costs vs benefits? Subsidy needs and justification? etc), and conducting research on impact on local small businesses (e.g. charcoal producers and retailers, appliance shops, cookstove manufacturers etc).

Promotion or facilitation of renewable energy programmes which need to be at least partially locally based (which may be driven locally or by national or other players), such as biogas, rooftop grid-connected solar PV, and solar water heating initiatives: this includes identification of local biogas opportunities (e.g. abattoir) and facilitating feasibility studies; engaging with power utility around local grid-connected solar PV pilot projects; engaging with local businesses (e.g. solar water heater, solar PV suppliers) regarding how to facilitate rollout and improve affordability; awareness raising and community engagement, and monitoring of implementation; research on impact and methodology improvements to maximize benefits; promotion and advocacy around fast-emerging options such as rooftop grid-connected solar PV; direct procurement of solar PV streetlights, and undertaking landfill gas feasibility studies and subsequent implementation pursuit.

Building energy efficiency promotion (local government often has direct mandates here): this includes developing local bylaws for commercial building energy efficiency; awareness raising around residential building energy efficiency (appropriate window use, shading etc), and organising training of building sector to improve ability for energy efficient construction.

Industrial energy efficiency promotion: including encouraging/incentivising audits (e.g. link with donor EE programmes), and facilitating training and awareness programmes locally.

Bringing sustainable energy concerns into spatial planning and transport planning: this includes introducing densification, corridor development, mixed use and other approaches into spatial plans; bringing tribal authorities (land owners) and municipal officials together in developing a shared vision around spatial futures, and researching and modeling the impact of different spatial and transport interventions on future energy, cost, social welfare, and economic activity – and engage with regional and national transport planning processes to introduce more optimal approaches.

Developing a more conducive enabling environment for implementation: this includes linking with support/donor programmes around supporting sustainable energy, and identifying how collaboration could work; researching and providing local data on energy status, problems, and opportunities; researching and communicating updates on implementation status as programmes are implemented, and evaluate their impact; capacity building of local government staff; programmatic partnerships between local government and local research institutions; developing networks amongst local governments for lessons exchange and mutual support, and developing links between local, regional and national players to facilitate integrated planning and coordinated approaches

Helping clarify the role of local government in sustainable energy, and identify effective methodologies to support them in fulfilling this potential: this includes researching the process of local government involvement and role in sustainable energy, and assess their challenges in this regard, researching approaches to supporting local government to engage effectively with sustainable energy promotion, and disseminate experience in this regard and potential for local government in promoting sustainable energy at workshops, conferences, meetings etc.

The role of local governments and local research organisations in moving to a more sustainable energy future as envisioned by the SDGs is clearly substantial. This has implications for development aid resource allocation and research funding channels.  Importantly, it is not enough to just fund research – a dual approach of partnerships with researchers who align directly with the needs of local governments, as well as a strong focus on real capacity building of local governments is important (note that information dissemination is not capacity building).  Programmes such as SAMSET are working in this area, but the needs are currently far greater than the enabling resources, by an order of magnitude at least.

Strategies for Sustainable Energy Transitions for Urban Sub-Saharan Africa – SETUSA 2017

The SAMSET project team is pleased to announce the hosting of the Strategies for Sustainable Energy Transitions for Urban Sub-Saharan Africa (SETUSA) Conference, which will be held at the Institute of Statistical, Social and Economic Research (ISSER) Conference Facility, University of Ghana, Legon, Accra, Ghana from the 19th – 20th June 2017.

SETUSA Banner 2

By 2050, it is envisaged that three out of five people from the estimated 2 billion population across Africa will be living in cities. Sub-Saharan African economies have grown 5.3 percent per annum in the past decade, triggering a dramatic increase in energy needs. Against this backdrop, it is estimated that by 2040 about 75% of the total energy consumption in Sub-Saharan Africa will be in urban areas with its associated implications on sustainable development.

Given these challenges on sustainable development, solutions for sustainable energy transitions in the Sub-Saharan African region are extremely important, and likely to have wide-ranging consequences on the sustainability of the region’s economies. This reality also imposes an urgent obligation on the continent to consider sourcing more of its abundant renewable energy resources to ensure long-term security of energy supply. Particularly, renewable energy resources — solar, wind, organic wastes – and their corresponding technologies offer more promises for sustainable energy futures than the conventional energy sources.

Therefore, there is the need first of all to raise awareness on renewable energy options and energy efficiency opportunities in urban areas, and to promote strategies which will maximise their benefits in providing secure, sustainable and affordable energy to meet the rising energy demand in the region’s fast-growing cities. Secondly, there is also the need for national as well as local government planners and policy makers to understand local urban contexts so that they can grasp the significant opportunities of engaging at a local level, as well as acquire the critical set of capacities and skills necessary to drive and influence the uptake of clean energy and efficient technologies.

The conference aims to bring together social scientists, policy-makers and entrepreneurs in the urban clean energy sphere, to discuss strategies for moving Sub-Saharan African economies to a more sustainable energy transition pathway. We are inviting papers on energy efficient buildings, energy efficiency and demand-side management in urban areas, renewable energy and energy supply in urban areas, electrification and access to modern energy in urban areas, waste to energy in urban areas, spatial planning and energy infrastructure in urban areas, energy and transportation in urban areas.

SETUSA Final Call for Papers (PDF)

Details of the call for papers and other information, can be found on the conference website: www.setusa.isser.edu.gh

More information on the SAMSET project can also be found on our homepage: www.samsetproject.net

Smart Power – Smart Storage

Simon Batchelor from Gamos writes on the increasing role that smart energy storage solutions have in developing sustainable urban energy.

On Friday 4th March 2016, the UK government published an interesting report on ‘Smart Power’ which might be relevant to the forward thinking municipalities of SAMSET. This was a review where the the (UK) National Infrastructure Commission was asked to consider how the UK can better balance supply and demand, aiming towards an electricity market where prices are reflective of costs to the overall system. Its findings have some relevance to the longer term planning for the municipalities involved in SAMSET.

‘Smart power’ makes practical recommendations to improving the electricity market of UK – not new subsidies or substantial public spending but three key recommendations. One of the three key recommendations is “to encourage network owners to use storage.” The Smart power report found that the flexible smart power system recommended by the National Infrastructure Commission could result in savings of up to £8.1 billion a year by 2030.

SBatch samset image1 mar2016

The strategic use of storage could create an operational flexibility that would “significantly reduce the integration cost of intermittent renewables, to the point where their whole-system cost makes them a more attractive expansion”. Increasing flexibility was found to be “low-regret option”, reducing the overall cost while maintaining security of supply requirements.

Why is storage a key to unlocking the UK grid? Storage allows consumers and suppliers to take energy and store it so that it can be used when it is most needed. In the UK electricity prices vary throughout the day, and across the year. When demand is higher, prices rise. Storage technology allows consumers to buy electricity when it is cheap and use it later when it is needed. There are a number of ways electricity can be stored. Today, the UKs main source of storage is through pumped hydro – simply converting electric energy into potential energy and back by moving water up and down a hill. There is, however, an increasing range of alternative ways to store energy including; chemical batteries, compressed air and supercapacitors.

SBatch samset image2 mar2016

Electricity has historically been difficult and expensive to store. However, over the last decade there has been a great deal of innovation in electricity storage technologies driven mostly by consumer electronics like mobile phones and investment in electric vehicles. This rapidly evolving environment has driven innovation and reduced costs. For example, the cost of lithium ion batteries has decreased from more than $3,000/kWh in 1990 to less than $200/ kWh today. These technologies are now on the verge of being able to compete with power stations for some of the services they provide. Crucially, storage technology will not need subsidies to be attractive to investors – businesses are already queuing up to invest.

We are not talking small batteries here. The report gives two examples. The ‘Kilroot Advancion® Energy Storage Array’ is based in Carrickfergus in Northern Ireland and offers 10 MW of interconnected energy storage, equivalent to 20 MW flexible resource. This storage – which is comprised of over 53,000 batteries – is able to respond to changes in the grid in less than a second, providing a very fast response ancillary service to help balance the electricity system at times of high demand. The array is a fully commercial project, with no additional costs for consumers. The ‘Big Battery’ in Leighton Buzzard scheme features a 6MW/10MWh storage solution comprising approximately 50,000 lithium ion batteries, which has enabled UK Power Networks to manage electricity demand at peak times without building excess capacity.

It is the idea that storage unlocks some of the generating potential of the middle of the night that may prove attractive. With the right policy environment, battery costs could enable municipalities to mitigate power outages, and shave off peak loading. This would give everyone a better experience with their electricity supply, enable more renewables to be in the system, and according to the report, this could be done at no additional cost to the consumers. Most grid profiles are similar to the one above for the UK. There is low use in the middle of the night, increasing during the day, and with a peak demand in the early evening as lights, televisions and cooking come on. This is true even for sub Saharan Africa as the daily load curves for Kenya illustrates. Using and storing that ‘middle of the night’ energy could improve consumers experience without creating new generating capacity.

SB 3dgraph image3 mar2016

Ref for graphic ENERGY EFFICIENCY FROM THE KENYA POWER PERSPECTIVE Margaret Kanini 2013

Local Government’s Role in Energy Transitions is Poorly Understood

Mark Borchers, Megan Euston-Brown and Melusile Ndlovu from Sustainable Energy Africa recently contributed this post to the Urbanafrica.net Urban Voices series, analysing the role of local government in sustainable energy transitions. The original is reproduced in full below.

African local governments have an important role to play in sustainable energy transitions, yet the ability within local governments to step into this role is severely inadequate. This is problematic because municipalities, in close contact with their citizenry, are often better placed to plan and respond to energy needs in locally appropriate ways than national governments or other ‘external’ agents.

Urbanization rates in Africa are amongst the highest in the world and the municipal capacity to undertake minimum levels of urban planning and basic service delivery is severely inadequate, as acknowledged by the African Development Bank, UNHabitat and Cities Alliance.

A major challenge is that local government is poorly understood by those trying to be agents of change, and research often remains at a superficial level. Even work which specifically aims at going beyond the usual ‘vague policy suggestions,’ to use a phrase from the ACC’s Edgar Pieterse, struggles to get to grips with many key local government dynamics, and the number of outputs produced by consultants or researchers with local government as an intended target audience, which have little or no purchase, is worrying.

Non-profit Sustainable Energy Africa’s experience of working in partnership with local government in South Africa for 17 years to support with sustainable energy transitions affirms this. The organization has provided capacity to local government in areas where government did not have experience, staff or systems, and in an environment where officials are often preoccupied with short-term service delivery and other urgent goals displace longer-term considerations such as those linked to climate change mitigation.

Sustainable Energy Africa has spent years supporting several municipalities in the development of energy and climate change strategies. However, after official approval of the first few strategies, it started becoming apparent that the momentum that had led to strategy finalization rarely continued into implementation. For example, the first set of strategies developed in the municipalities of Cape Town, Sol Plaatjie, Ekurhuleni, Buffalo City and Tshwane struggled to gain significant traction.

What followed was many years of supportive partnership with municipalities: participating in meetings, undertaking research in areas where there were concerns, developing specific motivations for political or other vested interests as they arose, engaging with city treasury to raise their awareness and explore workable revenue futures, exchanging lessons and sharing success stories amongst municipalities, and raising the profile of local issues in national fora and strategies.

Sustainable Energy Africa’s experience has demonstrated that the work involved in getting to the point of having an officially approved energy and climate change strategy is but a small fraction of what is required for any real change to gain traction. Unfortunately, the dynamics that impede efforts to bring the strategy to fruition are often poorly understood by development support institutions (including donors) and researchers. Guidelines and resource documents on urban transport policy development, climate proofing of informal settlements, and energy efficiency financing, to give a few examples, are often of little use to local government. Research focusing on dynamics affecting service delivery and assessments of renewable energy options for urban areas, for example, seldom talk to the constraints and pressures that senior officials encounter on a day-to-day basis, and thus tend to have little impact.

It is not surprising that adequately detailed understanding of local government is lacking, precisely because it is difficult to gain useful insight into this world from normal development support programmes, which may last a few years and often involve imported expertise, or from research projects, even if they are methodologically well considered. To illustrate, about 10 years ago work undertaken by development support organisations and researchers pointed to solar water heaters being economically, socially and environmentally beneficial for application across South Africa’s urban areas. Cost and technical feasibility studies were undertaken, presentations made, guidelines produced, case studies circulated, and workshops held. Introducing solar water heaters was considered by many to be a ‘no brainer’, and was a standard feature of all municipal energy strategies developed at the time. Yet over the years little changed. Within municipalities there were staff capacity barriers, institutional location uncertainties, debates around mandates, political ambivalence, and a good dose of plain old resistance to change.

When one of the most progressive South African municipalities finally developed a detailed solar water heater rollout programme, further obstacles had to be negotiated: it ran foul of the city treasury (it threatened electricity sales and thus revenue), electricity department (impact on the load profile, technical issues and revenue), procurement department (selection of different equipment service providers), housing department (roof strength issues of some government housing), and legal department (ownership of equipment and tendering processes), which further delayed progress by several years.

Heaters
Solar water heaters on low-income housing in South Africa. Image: SEA

Other sustainability interventions such as energy efficiency in buildings, renewable electricity generation and densification (an important enabler of sustainable transport options) all face their own mix of complexities, most of which are difficult to know from the outside.

Change in government institutions seldom happens fast. When those hoping to be agents of change better understand the complexities of municipal functioning, transformation can be more effectively facilitated. Supporting local government often means entering an uncomfortable, messy, non-linear space but it can be more effectively done than often happens. In many ways, what is required is an inversion of the usual approach: support agents or researchers need to respond to the specific, not the general; listen, not advise; seek to be of service rather than pursue a preconceived agenda. The focus of the lens needs to shift well beyond general observations on ‘local institutional capacity’, ‘reform of regulatory systems’ or ‘policy impasses’. What is needed is a much more detailed, nuanced, and longer-term understanding and set of relationships for more impactful engagement.

Through applying these approaches, Sustainable Energy Africa’s work in South Africa has helped local government move from being considered irrelevant to the energy field 10 years ago to being regarded as critical agents to a sustainable energy future today.

A recent independent review of Sustainable Energy Africa’s local government support programme points to its success. It is described as, amongst others, having a clear role in the development of nation-wide city energy data, in facilitating energy efficiency programmes in different sectors in several municipalities, in promoting renewable energy (often rooftop solar PV) in several major cities, and in institutionalizing sustainable energy and climate change issues within municipalities.

Drawing on the above experience, the SAMSET project is working with African municipalities at a detailed level in partnership with universities and development organisations in Africa and the UK, and six municipalities in Uganda, Ghana and South Africa. This collaboration walks the full process of systemic change with the municipalities, and focuses the lens of research and implementation support on this inadequately understood, yet critical, arena – the detailed dynamics in the belly of the local government beast.

Energy Efficiency in South Africa – Ineffective Strategy and Unpredictable Successes and Failures

Mark Borchers from SEA writes on the difficulties faced in and with energy efficiency programs and policies in South Africa. South Africa has had an official, approved energy efficiency strategy since 2004. Therein were sensible targets such as 15% industrial energy efficiency improvement by 2014 and 10% residential efficiency by 2014, with an overall efficiency target of 12% by 2014.  And our work in the area supported this potential for saving.  At the time we were hopeful that this would be the start of a more energy efficient, lower carbon trajectory for the country with corresponding economic benefits which are always mentioned in association with energy efficiency.  These were fairly naïve days for us however, as we believed that there was a necessary link between an official government strategy and something actually changing on the ground.  In 2008 the strategy was reviewed and updated partly because it was clear that the earlier strategy had been largely ineffectual. The revised strategy was done with due diligence and stakeholder participation, like the earlier one, and listed similar or higher targets as being reasonable and achievable.    My opinion is that, in spite of a reasonably sound efficiency programme run by the national utility Eskom,  the new strategy was headed along the same ineffectual trajectory as the earlier one… until South Africa hit a power crisis – but I’ll come back to that.

Here I feel it is worth emphasizing an often observed but still not widely internalized fact: that an official strategy is a useful and necessary step, but it is one small factor in creating an enabling environment in which a transition can take place.  How many officials, researchers, consultants and international development organisations are willing to rest on their laurels once the strategy is in place with the belief that the ship has now left the harbor and will arrive at its destination in due course?  The truth is that the strategy is the easy part – its just identifying that the ship should undertake a journey and the approximate route of that journey.  The crew, the skills, the supplies, the money, and the equipment have not been given much thought at this point typically.  Even if the strategy identifies where the money should come from (for example) that is a far cry from actually sourcing the money.   If the strategy development is undertaken in a participatory manner with proper background analysis, it has clear value in capacity building and alignment of stakeholders as well as plotting an appropriate journey, so it is certainly a prerequisite to progress, but my point is that it can very easily lead nowhere after this point unless we are aware that it is just one milestone on a journey of many miles, and should never be regarded as an endpoint of our work.  It is appropriate to pause and look upon the still-warm strategy document with pride, even to hold an official launch, but then to roll up your sleeves and start on the journey of embedding the strategy in the world.

…back to South Africa: Then along came South Africa’s power crisis and steep power price increases.  This caused a flurry of activity, including energy efficiency initiatives in all sectors of the economy, most of which had little or nothing to do with the official energy efficiency strategy!  National Treasury also put aside money for local government efficiency and allocated it to municipalities with binding reporting requirements and timeframes.  The main drivers for efficiency in the country have therefore been power failures, price increases and direct allocation of Treasury funds within a mandatory framework, not the existence of an Energy Efficiency Strategy. There are lessons here for policy development work, capacity building activities, knowledge exchange research and implementation support activities: constraints to transition are mostly not to do with the existence of appropriate policies and strategies, which are often sound and well founded, but rather the detailed and complicated dynamics of the space between policy and implementation, which is generally messy, under-capacitated, and full of conflicting interests and misalignment of priorities.  This fact is a central tenet around which the design of the SAMSET project was formulated.