Tag Archives: Sanitation

SAMSET Releases a New Guide to Clean Energy Transitions for Sub Saharan Municipalities

Simon Batchelor from Gamos writes on the recently-released Guidelines to Clean Energy document for SAMSET.

As a part of our ongoing work with Sub Saharan Municipalities in Uganda and Ghana, the research team have brought together some basic information on clean energy transitions.  “GUIDELINES TO CLEAN ENERGY:- A PRACTICAL GUIDE FOR SUB SAHARAN AFRICAN MUNICIPALITIES (2017)”. The Guide is intended to help decision makers in Municipalities in Sub Saharan Africa to consider ways in which they could make their city utilize cleaner energy. Its foreword states “This manual has been designed for use by city officials and planners working in sub-Saharan Africa. It is a practical handbook, which identifies easy to achieve energy interventions that will save money (for cities, businesses and households), promote local economic development, and enhance the sustainable profile of a city. This manual is specifically aimed as a support tool to achieve the implementation of key interventions within municipalities across sub-Saharan Africa.”

The 200 page document starts with a call for cleaner energy. Its opening chapter draws on various sources to show how our ongoing use of fossil fuels is linked to climate change. The historical contribution of Sub Saharan Africa to global climate change is small compared to the developed countries, however over the next 30 years it will increase its contribution particularly if ‘Business as Usual’ is continued. The opening chapters discuss how this global problem is the responsibility of all, and how municipalities could take a decision to move towards clean energy that might contribute to climate change mitigation in the long term.

The guide, however, is titled ‘A Practical Guide’ and we felt it important to move quickly on from the macro picture of global challenges to the specifics of what a municipality might do. Each of the chapters has the same format –

  • An overview, which includes some basic description of technology and social change options;
  • The Case; which discusses how simple changes can make considerable differences
  • Potential for Rollout; discussing the realities of Sub Saharan African life and whether the technology could be introduced
  • Barriers to implementation (and effort to resolve); an attempt to anticipate barriers, and suggestions of what might be done
  • How to go about implementation; some suggestions for action
  • Case Studies; some Sub Saharan African case studies to illustrate the relevance and possibilities of the chapters subject.

Chapter 5 starts with Energy efficient lighting a technology that is relatively easy to implement. LED bulbs have become common and simple action ensuring they are available in the market and ‘encouraged’ among consumers can save significant amount of electricity (compared to older lamps). Chapter 6 broadens the picture to include energy efficient buildings.Ideally these need some design at the very start, but the chapter also makes suggestion for retrofitting that can lower energy consumption. Chapter 7 considers public transport. Vehicles can not only consume considerable amounts of fossil fuel, but create localized pollution. The chapter focuses on the possibilities of public transport as an alternative to everyone getting their own car. Chapter 8 considers cooking. While it may seem that municipalities have little to say about the choice of domestic cooking fuels, the ongoing use of biomass (charcoal) in urban areas contributes to local pollution, kitchen pollution and global pollution. Municipalities can undertake various strategies to assist consumers to move toward genuinely clean cooking.

Waste to energy in Chapter 9 is very much a municipality concern. Collection of waste is a challenge to many SSA municipalities, and the possibility of converting it to useful energy is worth consideration. Chapter 10 talks about Solar Photovoltaics. Solar PV has come down in price considerably over the last few years and this chapter discusses the possibilities – from solar farms contributing to the national grid, to mini and micro grids, to solar home systems.

Renewable purchase agreements are a policy tool that can encourage clean energy. Chapter 11 discusses these, pointing the municipality players to consider the policy instruments available in their country. Chapter 11 touches on carbon trading – this again is effectively a policy instrument that municipalities might consider using. And finally , a last chapter summaries but does not deal in depth, some ideas on Concentrated Solar Power, Wind Power and Solar Water Heaters.

The guide ends with a call to action, to share ideas with colleagues, and to take small steps that help us tread lightly on the earth. “We may have discussed many ideas, technologies, approaches, regulations, policies, feed in tariffs, low energy light bulbs, and energy efficient buildings among others, but ultimately consumption and sustainability come down to you. Humanity has a large footprint on this world and currently we are not treading lightly. We consume; we consume fossil fuel, we create so much impact that our climate is changing, we build cities that can be seen from space; we are heavy on the earth.”

Advertisements

Cape Town Electricity Department Meeting – 11th November 2014

Xavier Lemaire and Daniel Kerr from UCL, and Yachika Reddy from SEA, recently met with Maurisha Hammer and Zwelethu Zulu, representatives from the Cape Town Municipal Electricity Department’s Electrification Division, to discuss the city’s approach to the electrification of informal settlements, and the challenges facing informal settlement electrification across South Africa.

The Cape Town approach to informal settlement electrification is pioneering compared to the approaches of other countries and metropolitan areas. Informal settlement electrification is under a separate project management procedure to that of formal settlement electrification in the municipality. Formal settlements are project managed by developers, housing associations and “Section 21” companies, which are non-profit housing project developers. Informal settlement electrification is directly project-managed by the Electrification Department, and projects are selected in-situ, i.e. any existing informal settlement has the potential to be electrified under the Council approved Residential Electricity Reticulation policy that requires that  it is a stable settlement (i.e. not transient) and has not been identified for upgrading or relocation . To be considered for electrification, an informal settlement may not be situated

  • in a road or rail reserve or in a servitude, unless otherwise permitted by land owner;
  • in an area below the 1:50 year flood return period contour;
  • in a storm water detention pond; or
  • on unstable land.

This approach is in contrast to other countries’ and cities’ experiences with informal settlement electrification. For example, while cases exist for “slum” electrification in India (notably Chennai and Mumbai) and Thailand (Bangkok), these are processes dependant on the formalisation of property rights for informal dwellers. Part of the rationale behind the Cape Town approach is to do with the constitutional mandate for municipalities in South Africa to provide basic municipal services (electricity, water, sanitation, and refuse management) to all inhabitants of the municipality. Whilst funding constraints prevent the fulfilment of this mandate in many municipalities, Cape Town seems to be succeeding in doing so through this program.

Another major contributor to the success of the program is the community engagement aspect of informal settlement operations. Repeated meetings with community leaders, and notably members of the community themselves, throughout the duration of an electrification project, significantly contribute to investment and participation of the community in the project, nurturing trust in the services and engendering community spirit, cutting down on electricity theft and grid overloading. The opportunity is also used to get cooperation from the community to open up access ways in densely populated areas, not only to facilitate the installation of an electricity reticulation network but also to be maintained as access ways for health emergency services as well as the provision of other basic services such as water and sanitation where possible

The electrification of informal dwellings in the backyards of formal housing developments is a recent initiative. Two pilot projects have been successfully completed in what many regard as a first-of-its-kind program. The main challenge with these projects is the reinforcement of the existing reticulation network serving these properties. In most cases the additional load posed by backyard dwellings makes it necessary to replace the backbone infrastructure. At this stage the programme is restricted to backyard dwellings on properties owned by the City (rental housing) due to legal restrictions around enhancing private properties with public funds.

South African municipalities generate significant income from electricity distribution, and are responsible under their mandate to electrify urban areas, with rural areas under the jurisdiction of ESKOM, the national utility. Given the low rates of return for informal settlement electrification, for less affluent South African municipalities, replicating the Cape Town experience may prove challenging. While the electrification of informal settlements and backyard dwellings may not make financial sense if viewed with too narrow a perspective, the City emphasises wider benefits such as better living conditions, economic stimulation, health and safety, job creation and education opportunities. In view of the challenges faced with the delivery of free formal housing due to growing demand faced with urbanisation and historic spatial planning legacies amongst others in formal housing, informal housing has an important interim role to play and will not disappear overnight. It is with this knowledge that the City Of Cape Town decided more than a decade ago to provide electricity to those living in informal settlements.

In all, the Cape Town experience in informal electrification has useful implications for the SAMSET project. The management of informal electrification projects by the municipality has served to mitigate a number of risks inherent in informal settlement electrification, and this experience -under a number of conditions – could be cross-applied to great effect in other metropolitan areas in developing countries globally, particularly in the Sub-Saharan African context.